Update of Bodek-Yang Model 2021 (accounting for difference between Vector and axial structure functions)

Arie Bodek – University of Rochester
Un-Ki Yang – Seoul National University
Yang Xu – University of Rochester

July 30, 2021 9:00 AM NuCo 2021 Neutrinos en Columbia

https://indico.cern.ch/event/1010475/contributions/4450703/ https://renata.zoom.us/j/88699889284

Bodek-Yang Model

- Bodek-Yang model aims for describing DIS cross section in all Q² regions
- \triangleright Challenges in e/ μ /-N DIS (to start with)
 - High x PDFs at low Q²
 - Resonance region overlapped with a DIS contribution
 - Hard to extrapolate DIS contribution to low Q² region from high Q² data due to non-perturbative QCD effects.

- A model in terms of quark-parton model (easy to convert charged lepton scattering to neutrino scattering)
 - ☐ Understanding of high x PDFs at low Q²? Wealth of SLAC, JLAB data.
 - Understanding of resonance scattering in terms of quark-parton model? (duality works, many studies by JLAB)

Lessons from previous QCD studies

- NLO & NNLO analyses with DIS data: PRL 82, 2467 (1999), Eur. Phys. J. C13, 241 (2000) by Bodek and Yang
- Kinematic higher twist (target mass) effects are large and must be included in the form of Georgi & Politzer x scaling.
- Resonance region is also well described (duality works).
- Most of dynamic higher twist corrections (in NLO analysis) are similar to missing NNLO higher order terms.
- NNLO pQCD+TM with NNLO PDFs can describe the nonperturbative QCD effects at low Q²
- Thus, we reverse the approach to build the model:
 - Use LO PDFs and "effective target mass and final state masses" to account for initial target mass, final target mass, and even missing higher orders
 We use LO PDFs and K Factors to be able to go to Q² = 0 (NLO PDF blow up at low

$$\xi = \frac{2xQ^{'2}}{Q^2(1 + \sqrt{1 + 4M^2x^2/Q^2})},$$

 Q^2

$$\begin{split} 2Q^{'2} &= [Q^2 + {M_f}^2 - {M_i}^2] \\ &+ \sqrt{(Q^2 + {M_f}^2 - {M_i}^2)^2 + 4Q^2({M_i}^2 + P_T^2)}. \end{split}$$

NLO vs NNLO Analyses

Very high x and low Q2 data

- Very high x data is well described by the pQCD+TM+HT
- Extraction of the high x PDF is promising

Modeling neutrino cross sections

NNLO pQCD +TM approach: describes the DIS region and resonance data very well

- Bodek-Yang LO approach: (pseudo NNLO)
- Use effective LO PDFs with a new scaling variable, ξw to absorb target mass, higher twist, missing QCD higher orders

$$x_{Bj} = \frac{Q^2}{2M\nu}$$

$$\xi_W = \frac{Q^2 + B}{\{M\nu[1 + \sqrt{(1 + Q^2/\nu^2)}] + 2}$$

Multiply all PDFs by K factors for photo prod. limit and higher twist

$$F_2(x,Q^2) \rightarrow \frac{Q^2}{Q^2 + C} F_2(\xi_w,Q^2)$$

B to be able to qo to Q2=0, and quark PT A an enhanced target mass term

Bodek-Yang Effective LO PDFs Model

- 1. Start with GRV98 LO (Q2min=0.80)
- 2. Replace x_{bj} with a new scaling, ξ_w
- 3. Multiply all PDFs by K factorfor photo prod. limit and higher twist [$\sigma(\gamma)$ = $4\pi\alpha/Q^2*F_2(x,Q^2)$]

Ksea = $Q^2/[Q^2+Csea]$

Kval = $[1-G_D^2(Q^2)]$

* $[Q^2+C_{2V}] / [Q^2+C_{1V}]$

motivated by Adler Sum rule

where $G_D^2(Q^2) = 1/[1+Q^2/0.71]^4$

- 4. Freeze the evolution at $Q^2 = Q_{min}^2$
 - $F_2(x, Q^2 < 0.8) = K(Q^2) * F_2(\xi w, Q^2 = 0.8)$
- 5. Fit all DIS $F_2(p/D)$ data: with W>2 GeV SLAC/BCDMS/NMC/HERA data

 $F_2(p)$

 $\chi^2/DOF = 1235/1200$

Predictions for Resonance, Photo-production data

F₂(d) resonance

Photo-production (P)

Photo-production (d)

Bodek-Yang Effective LO PDFs Model

- Include the photo-production data
- Use different K factors for up and down quark type separately

Kval (u,d) =
$$[1-G_D^2(Q^2)] * [Q^2+C_{2V}] / [Q^2+C_{1V}]$$

Ksea (u,d,s) = $Q^2/[Q^2+Csea]$

Additional K^{LW} factor for valence quarks:

Kval =
$$K^{LW}*[1-G_D^2(Q^2)]*[Q^2+C_{2V}]/[Q^2+C_{1V}]$$

where $K^{LW}=(v^2+C^v)/v^2$

A	B	C_{v2d}	C_{v2u}
0.621	0.380	0.323	0.264
C_{sea}^{down}	C_{sea}^{up}	C_{v1d}	C_{v1u}
0.561	0.369	0.341	0.417
$C_{sea}^{strange}$	$C^{low-\nu}$	$\mathcal{F}_{valence}$	N
0.561	0.218	$[1 - G_D^2(Q^2)]$	1.026

Fit Results on DIS F2(p/D) data

Excellent Fits:

- red solid line: effective LO using ξw
- black dashed line: GRV98 with x_{bi}

Low x HERA and NMC data

Fit works at low x

Photo-production data

Additional K^{LW} factor for valence quarks:

Kval =
$$K^{LW}*[1-G_D^2(Q^2)]$$

* $[Q^2+C_{2V}]/[Q^2+C_{1V}]$

$$K^{LW} = (v^2 + C^v)/v^2$$

This makes a duality work all the way down to Q2=0 (for charged leptons)

Photo-production data with ν(Pbeam)>1 GeV included in the fitting

F2 & F, Resonance data

 $F_L = F_2 (1 + 4M^2 x^2 / Q^2) \frac{R}{(1+R)}$

- Predictions are in good agreement (not included in the fit) duality works
- F_L was calculated using F2 and R₁₉₉₈

Neutrino cross sections

- Effective LO model with ξw describe all DIS and resonance F_2 data as well as photo-production data (Q²=0 limit): vector contribution works well
- Neutrino Scattering:
 - Effective LO model works for xF₃?
 - Nuclear correction using e/μ scattering data
 - Axial vector contribution at low Q²?
 - Use R=R₁₉₉₈ to get 2xF₁
 - Implement charm mass effect through ξ w slow rescaling algorithm for F_2 , $2xF_1$, and xF_3

Effective LO model for xF₃?

- Scaling variable, ξw absorbs higher order effect for F_{2,} but the higher order effects for F₂ and xF₃ are not the same
- Use NLO QCD to get double ratio

$$H(x) = \frac{xF_3(NLO)}{xF_3(LO)} / \frac{F_2(NLO)}{F_2(LO)}$$

not 1 but almost indep. of Q²

Enhance anti-neutrino cross section by 3%

Effective LO model for xF₃?

 \rightarrow H(x,Q²)?

$$H(x) = \frac{xF_3(NLO)}{xF_3(LO)} / \frac{F_2(NLO)}{F_2(LO)}$$

H(x,Q²) is almost independent of Q²

Nuclear Effects: use e/µ data

Axial Vector Structure Functions

- > At high Q², vector and axial vector contribution are same, but not at low Q2. Previous assumption Type I (axial=vector)
- New: K factors for axial contributions: type (Axial>Vector)

$$K_{sea}^{vector} = \frac{Q^2}{Q^2 + C} \bullet K_{sea}^{axial} = \frac{Q^2 + 0.55C_{sea}^{axial}}{Q^2 + C_{sea}^{axial}} \bullet K_{val}^{axial} = \frac{Q^2 + 0.3C_{val}^{axial}}{Q^2 + C_{val}^{axial}}$$

$$K_{val}^{axial} = \frac{Q^2 + 0.3C_{val}^{axial}}{Q^2 + C_{val}^{axial}}$$

where
$$C_{sea}^{axial} = 0.75$$
, $C_{val}^{axial} = 0.18$

- 0.55 was chosen to satisfy the prediction from PCAC by Kulagin, agrees with CCFR data for F_2 extrapolation to ($Q^2=0$)
- But, the non-zero PCAC component of F₂^{axial} at low Q²: mostly longitudinal

$$2xF_1^{axial} = 2xF_1^{vector}$$

Small modification to GRV98 u and d quark sea

To better describe ratio of antineutrino and neutrino cross sections increase GRV98 u and d sea by 5% and decrease valence quarks by same amount, thus leaving $F_2(x, Q^2)$ unchanged, but slightly increasing antineutrino cross sections.

$$egin{align*} d_{sea} &= 1.05 \ d_{sea}^{grv98} \ ar{d}_{sea} &= 1.05 \ ar{d}_{sea}^{grv98} \ u_{sea} &= 1.05 \ u_{sea}^{grv98} \ ar{u}_{sea} &= 1.05 \ ar{u}_{sea}^{grv98} \ d_{valence} &= d_{valence}^{grv98} - 0.05 \ (d_{sea}^{grv98} + ar{d}_{sea}^{grv98}) \ u_{valence} &= u_{valence}^{grv98} - 0.05 \ (u_{sea}^{grv98} + ar{u}_{sea}^{grv98}) \ \end{array}$$

Comparison with CCFR (Fe), CHORUS (Pb) data

- Blue point: CHORUS/theory (type II)
- Solid line: theory (type I V=A)/(type II A>V)
- Red point: CCFR/theory (type II)
- \checkmark Type I (Vector = Axial at low Q²)
- ✓ Type II (Vector > Axial at low Q²)
 (Type II should be used)

Red point: CCFR/type II

Blue point: CHORUS/type II

Comparison with CCFR(Fe), CHORUS (Pb) data

Neutrino and antineutrino total cross sections- Data

At 40 GeV the largest contribution to the total cross section comes from the W > 1.4~GeV region, with smaller contributions from resonance production and quasielastic scattering ($\approx 3.5\%$ for neutrinos and $\approx 7\%$ for antineutrinos). Consequently, comparisons of our predicted cross section for W > 1.4~GeV (plus QE and Δ production cross sections) to total cross section data in this region provide a good test of the model.

To compare to total cross section data: use BY for W>1.4 GeV and add QE and Δ (W<1.4 GeV) cross section.

BY(DIS, W>1.4)

Total cross sections + Q.E. +

	Type I (V=A)	Type II (A>V)	World Average
σ_{ν} /E	0.656 ± 0.024	0.674 ± 0.024	0.675 ± 0.006
$\sigma_{ar{ u}}/{ m E}$	0.311 ± 0.016	0.327 ± 0.016	0.329 ± 0.011
$\sigma_{\bar{ u}}/\sigma_{ u}$	0.474 ± 0.012	0.487 ± 0.012	0.485 ± 0.005

Resonance
At 40 GeV energy

source	change	change	change	change
To you are	(error)	in σ_{ν}	in $\sigma_{\bar{\nu}}$	in $\sigma_{\bar{\nu}}/\sigma_{\nu}$
R	+0.1	-1.3%	-2.7%	-1.4%
$f_{\overline{Q}}$	+5%	-0.4%	+0.9%	+1.4%
$K^{axial} - K^{vector}$	+ 50%	+1.3%	+2.4%	+1.1%
N	+3%	+3%	+3%	0
Total		$\pm 3.6\%$	$\pm 4.8\%$	$\pm 2.5\%$

Systematics

Summary & Discussions

- BY Effective LO model with ξw describe all e/μ DIS and resonance data as well as photo-production data (down to Q²=0): provide a good reference for vector SF for neutrino cross section
- dσ/dxdy data favor updated BY(DIS) type II model
- K factors for axial vectors in BY(DIS) type II model are based on PCAC and agree with CCFR F2 Q2=0 measurement.
- BY(DIS) type II model (low Q²: axial>vector) provide a good reference for both neutrino and anti-neutrino cross sections (W>1.8).
- Model also works on-average down to W>1.4 GeV, thus providing some overlap with resonance models (and should be used for W>1.8). It cannot be used for the Δ resonance since Δ has isospin 3/2 and quarks have isospin ½, so duality does not work for the Δ .

Test of the Adler Sum Rule

This sum rule should be valid at all values of Q²

$$|F_V(Q^2)|^2 + \int_{\nu_0}^{\infty} W_{2n-sc}^{\nu-vector}(\nu, Q^2) d\nu$$

 $- \int_{\nu_0}^{\infty} W_{2p-sc}^{\nu-vector}(\nu, Q^2) d\nu = 1$

