Update of Bodek-Yang Model 2021

(accounting for difference between
Vector and axial structure functions)

Arie Bodek - University of Rochester Un-Ki Yang - Seoul National University Yang Xu - University of Rochester

July 30, 2021 9:00 AM
NuCo 2021 Neutrinos en Columbia
https://indico.cern.ch/event/1010475/contributions/4450703/ https://renata.zoom.us/i/88699889284

Bodek-Yang Model

> Bodek-Yang model aims for describing DIS cross section in all Q2 regions
Challenges in e/ $\mu /-\mathrm{N}$ DIS (to start with)

- High x PDFs at low Q2
- Resonance region overlapped with a DIS contribution
- Hard to extrapolate DIS contribution to low Q2 region from high Q2 data due to non-perturbative QCD effects.

> A model in terms of quark-parton model (easy to convert charged lepton scattering to neutrino scattering)
\square Understanding of high \times PDFs at low Q2? Wealth of SLAC, JLAB data.
- Understanding of resonance scattering in terms of quark-parton model? (duality works, many studies by JLAB)

Lessons from previous OCD studies

> NLO \& NNLO analyses with DIS data: PRL 82, 2467 (1999),
Eur. Phys. J. C13, 241 (2000) by Bodek and Yang

- Kinematic higher twist (target mass) effects are large and must be included in the form of Georgi \& Politzer x scaling.
- Resonance region is also well described (duality works).
- Most of dynamic higher twist corrections (in NLO analysis) are similar to missing NNLO higher order terms.
NNLO pQCD+TM with NNLO PDFs can describe the nonperturbative QCD effects at low Q^{2}
Thus, we reverse the approach to build the model:
- Use LO PDFs and "effective target mass and final state masses" to account for initial target mass, final target mass, and even missing higher orders
We use LO PDFs and K Factors to be able to go to $\mathbf{Q}^{2}=0$ (NLO PDF blow up at low Q^{2})

NLO vs NNLO Analyses

Very high x and low O^{2} data

> Very high x data is well described by the pQCD+TM+HT
$>$ Extraction of the high x PDF is promising

Modeling neutrino cross sections

> NNLO pOCD +TM approach: describes the DIS region and resonance data very well

> Bodek-Yang LO approach: (pseudo NNLO)

- Use effective LO PDFs with a new scaling variable, ξw to absorb target mass, higher twist, missing QCD higher orders

$$
x_{B j}=\frac{Q^{2}}{2 M v} \quad \Rightarrow \quad \xi_{W}=\frac{Q^{2} \pm B}{\left\{M v\left[1+\sqrt{\left.\left(1+Q^{2} / v^{2}\right)\right]}+A\right\}\right.}
$$

- Multiply all PDFs by K factors for photo prod. limit and higher twist

$$
F_{2}\left(x, Q^{2}\right) \rightarrow \frac{Q^{2}}{Q^{2}+C} F_{2}\left(\xi_{w}, Q^{2}\right)
$$

B to be able to qo to Q2=0, and quark PT
A an enhanced target mass term

Bodek-Yang Effective LO PDFs Model

1. Start with GRV98 LO (Q2 $\left.{ }_{\text {min }}=0.80\right)$
2. Replace $x_{b j}$ with a new scaling, ξ_{w}
3. Multiply all PDFs by K factorfor photo prod. limit and higher twist $\left[\sigma(\gamma)=4 \pi \alpha / Q^{2} * F_{2}\left(x, Q^{2}\right)\right]$
Ksea $=\mathrm{Q}^{2} /\left[\mathrm{Q}^{2}+\right.$ Csea $]$
Kval $=\left[1-\mathrm{G}_{\mathrm{D}}{ }^{2}\left(\mathrm{Q}^{2}\right)\right]$

$$
*\left[\mathrm{Q}^{2}+\mathrm{C}_{2 \mathrm{v}}\right] /\left[\mathrm{Q}^{2}+\mathrm{C}_{1 \mathrm{v}}\right]
$$

motivated by Adler Sum rule
where $G_{D}{ }^{2}\left(Q^{2}\right)=1 /\left[1+Q^{2} / 0.71\right]^{4}$
4. Freeze the evolution at $\mathrm{Q}^{2}=\mathrm{Q}^{2}$ min
$-F_{2}\left(x, Q^{2}<0.8\right)=K\left(Q^{2}\right){ }^{*} F_{2}\left(\xi w, Q^{2}=0.8\right)$
5. Fit all DIS $F_{2}(p / D)$ data: with $W>2 \mathrm{GeV}$

$F_{2}(p)$

Predictions

for Resonance, Photo-production data

$\mathrm{F}_{2}(\mathrm{~d})$ resonance

Photo-production (d)

Bodek-Yang Effective LO PDFs Model

> Include the photo-production data
> Use different K factors for up and down quark type separately
$\operatorname{Kval}(\mathrm{u}, \mathrm{d})=\left[1-\mathrm{G}_{\mathrm{D}}{ }^{2}\left(\mathrm{Q}^{2}\right)\right] *\left[\mathrm{Q}^{2}+\mathrm{C}_{2 \mathrm{v}}\right] /\left[\mathrm{Q}^{2}+\mathrm{C}_{1 \mathrm{v}}\right]$ Ksea $(\mathrm{u}, \mathrm{d}, \mathrm{s})=\mathrm{Q}^{2} /\left[\mathrm{Q}^{2}+\right.$ Csea]
> Additional K^{LW} factor for valence quarks:

$$
\mathrm{Kval}=\mathrm{K} L \mathrm{~W} *\left[1-\mathrm{G}_{\mathrm{D}}{ }^{2}\left(\mathrm{Q}^{2}\right)\right]^{*}\left[\mathrm{Q}^{2}+\mathrm{C}_{2 \mathrm{v}}\right] /\left[\mathrm{Q}^{2}+\mathrm{C}_{1 \mathrm{v}}\right]
$$

$$
\text { where } K^{L W}=\left(v^{2}+C^{v}\right) / v^{2}
$$

A	B	$C_{v 2 d}$	$C_{v 21}$
0.621	0.380	0.323	0.264
$C_{\text {sewn }}^{\text {oown }}$	$C_{\text {sea }}^{\text {pep }}$	$C_{v 1 d}$	$C_{v 14}$
0.561	0.369	0.341	0.417
$C_{\text {sea }}^{\text {stange }}$	$C^{\text {cow- }}$	$\mathcal{F}_{\text {valence }}$	N
0.561	0.218	$\left[1-G_{D}^{2}\left(Q^{2}\right)\right]$	1.026

Excellent Fits:

- red solid line: effective LO using ξ w
- black dashed line: GRV98 with x_{bj}

Low x HERA and NMC data

NMC [Proton target]

Fit works at low x

Photo-production data

> Additional KLW factor for valence quarks:

$$
\begin{aligned}
\text { Kval } & =K L W *\left[1-\mathrm{G}_{\mathrm{D}}{ }^{2}\left(\mathrm{Q}^{2}\right)\right] \\
& *\left[\mathrm{Q}^{2}+\mathrm{C}_{2 \mathrm{v}}\right] /\left[\mathrm{Q}^{2}+\mathrm{C}_{1 \mathrm{~V}}\right]
\end{aligned}
$$

$$
K^{L W}=\left(v^{2}+C^{v}\right) / v^{2}
$$

This makes a duality work all the way down to Q2=0 (for charged leptons)
> Photo-production data with v (Pbeam) >1 GeV included in the fitting

F2 \& F, Resonance data

$>\quad$ Predictions are in good agreement (not included in the fit) duality works
> F_{L} was calculated using F 2 and R_{1998}

Neutrino cross sections

- Effective LO model with ξ w describe all DIS and resonance F_{2} data as well as photo-production data ($Q^{2}=0$ limit): vector contribution works well
> Neutrino Scattering:
- Effective LO model works for xF_{3} ?
- Nuclear correction using e/ μ scattering data
- Axial vector contribution at low Q^{2} ?
- Use $R=R_{1998}$ to get $2 x F_{1}$
- Implement charm mass effect through $\overline{\mathrm{w}}$ slow rescaling algorithm for $\mathrm{F}_{2}, 2 \mathrm{x} \mathrm{F}_{1}$, and xF_{3}

Effective LO model for xF_{3} ?

> Scaling variable, ξ w absorbs higher order effect for F_{2}, but the higher order effects for F_{2} and $x F_{3}$ are not the same
> Use NLO QCD to get double ratio

$$
H(x)=\frac{x F_{3}(N L O)}{x F_{3}(L O)} / \frac{F_{2}(N L O)}{F_{2}(L O)}
$$

not 1 but almost indep. of Q^{2}
$>$ Enhance anti-neutrino cross section by 3\%

Effective LO model for XF_{3} ?

> $H\left(x, Q^{2}\right)$?

$$
H(x)=\frac{x F_{3}(N L O)}{x F_{3}(L O)} / \frac{F_{2}(N L O)}{F_{2}(L O)}
$$

> $\mathrm{H}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ is almost independent of Q^{2}

Nuclear Effects: use e/u data

-SLAC nudear density Fit

Axial Vector Structure Functions

> At high Q^{2}, vector and axial vector contribution are same, but not at low Q2. Previous assumption Type I (axial=vector)
> New: K factors for axial contributions: type || (Axial>Vector)

$$
K_{\text {sea }}^{\text {vector }}=\frac{Q^{2}}{Q^{2}+C} \bullet K_{\text {sea }}^{\text {asial }}=\frac{Q^{2}+0.55 C^{\text {axial }}}{Q^{2}+C_{\text {seal }}^{\text {saial }}}
$$

$$
K_{\text {val }}^{\text {axial }}=\frac{Q^{2}+0.3 C_{\text {vaial }}^{\text {axil }}}{Q^{2}+C_{\text {val }}^{\text {axal }}}
$$

$$
\text { where } C_{\text {sea }}^{\text {axial }}=0.75, C_{\text {val }}^{\text {axial }}=0.18
$$

- 0.55 was chosen to satisfy the prediction from PCAC by Kulagin, agrees with CCFR data for F_{2} extrapolation to ($\mathrm{Q}^{2}=0$)
- But, the non-zero PCAC component of $F_{2}{ }^{\text {axial }}$ at low Q^{2} : mostly longitudinal

$$
2 x F_{1}^{\text {axial }}=2 x F_{1}^{\text {vector }}
$$

Small modification to GRV98 u and d quark sea

To better describe ratio of antineutrino and neutrino cross sections increase GRV98 u and d sea by 5\% and decrease valence quarks by same amount, thus leaving $F_{2}\left(x, Q^{2}\right)$ unchanged, but slightly increasing antineutrino cross sections.

$$
\begin{aligned}
d_{\text {sea }} & =1.05 d_{\text {sea }}^{\text {grv98 }} \\
\bar{d}_{\text {sea }} & =1.05 \bar{d}_{\text {sea }}^{\text {grv98 }} \\
u_{\text {sea }} & =1.05 u_{\text {sea }}^{\text {grv9 }} \\
\bar{u}_{\text {sea }} & =1.05 \bar{u}_{\text {sea }}^{\text {grva }} \\
d_{\text {valence }} & =d_{\text {valence }}^{\text {grve }}-0.05\left(d_{\text {sea }}^{\text {grv98 }}+\bar{d}_{\text {sea }}^{\text {grv98 }}\right) \\
u_{\text {valence }} & =u_{\text {valence }}^{\text {grv98 }}-0.05\left(u_{\text {sea }}^{\text {grv98 }}+\bar{u}_{\text {sea }}^{\text {grv98 }}\right)
\end{aligned}
$$

Comparison with CCFR (Fe), CHORUS (Pb) data

- Blue point: CHORUS/theory (type II)
- Solid line:
theory (type I $\mathrm{V}=\mathrm{A}$)/(type II $\mathrm{A}>\mathrm{V}$)
Red point: CCFR/theory
(type II)
Type I (Vector = Axial at low Q ${ }^{2}$)
Type II (Vector > Axial at low Q^{2}) (Type II should be used)

Red point: CCFR/type II
 Blue point: CHORUS/type II

Comparison with CCFR(Fe), CHORUS (Pb) data

Neutrino and antineutrino total cross sections- Data

AntiNeutrino σ / E in $10-38$ cm2/GeV

At 40 GeV the largest contribution to the total cross section comes from the $W>1.4 \mathrm{GeV}$ region, with smaller contributions from resonance production and quasielastic scattering ($\approx 3.5 \%$ for neutrinos and $\approx 7 \%$ for antineutrinos). Consequently, comparisons of our predicted cross section for $W>1.4 \mathrm{GeV}$ (plus QE and Δ production cross sections) to total cross section data in this region provide a good test of the model.

To compare to total cross section data: use BY for W>1.4 GeV and add QE and $\Delta(W<1.4 \mathrm{GeV})$ cross section.

Total cross sections

Type I (V=A) Type II (A>V) World Average

	Type I $(\mathrm{V}=\mathrm{A})$	Type II $(\mathrm{A}>\mathrm{V})$	World Average
$\sigma_{\nu} / \mathrm{E}$	0.656 ± 0.024	0.674 ± 0.024	0.675 ± 0.006
$\sigma_{\bar{v}} / \mathrm{E}$	0.311 ± 0.016	0.327 ± 0.016	0.329 ± 0.011
$\sigma_{\bar{v}} / \sigma_{\nu}$	0.474 ± 0.012	0.487 ± 0.012	0.485 ± 0.005

Resonance

At 40 GeV energy

source	change (error)	change in σ_{ν}	change in $\sigma_{\bar{\nu}}$	change in $\sigma_{\bar{\nu}} / \sigma_{\nu}$
R	+0.1	-1.3%	-2.7%	-1.4%
$f_{\bar{Q}}$	$+5 \%$	-0.4%	$+0.9 \%$	$+1.4 \%$
$K^{\text {axial }}-K^{\text {vector }}$	$+50 \%$	$+1.3 \%$	$+2.4 \%$	$+1.1 \%$
N	$+3 \%$	$+3 \%$	$+3 \%$	0
Total		$\pm 3.6 \%$	$\pm 4.8 \%$	$\pm 2.5 \%$

Systematics

Summary \& Discussions

> BY Effective LO model with ξ w describe all e/ μ DIS and resonance data as well as photo-production data (down to $\mathrm{Q}^{2}=0$): provide a good reference for vector SF for neutrino cross section
> do/dxdy data favor updated BY(DIS) type II model

- K factors for axial vectors in BY(DIS) type II model are based on PCAC and agree with CCFR F2 Q2=0 measurement.
> BY(DIS) type II model (low Q2: axial>vector) provide a good reference for both neutrino and anti-neutrino cross sections ($\mathrm{W}>1.8$).
> Model also works on-average down to $\mathrm{W}>1.4 \mathrm{GeV}$, thus providing some overlap with resonance models (and should be used for $W>1.8$). It cannot be used for the Δ resonance since Δ has isospin $3 / 2$ and quarks have isospin $1 / 2$, so duality does not work for the Δ.

Test of the Adler Sum Rule

> This sum rule should be valid at all values of Q^{2}

$$
\begin{aligned}
& \left|F_{V}\left(Q^{2}\right)\right|^{2}+\int_{\nu_{0}}^{\infty} \mathcal{W}_{2 n-s c}^{\nu-\text { vector }}\left(\nu, Q^{2}\right) d \nu \\
- & \int_{\nu_{0}}^{\infty} \mathcal{W}_{2 p-s c}^{\nu-\text { vector }}\left(\nu, Q^{2}\right) d \nu=1
\end{aligned}
$$

$$
\begin{aligned}
& \left|\mathcal{F}_{A}\left(Q^{2}\right)\right|^{2}+\int_{\nu 0}^{\infty} \mathcal{W}_{2 n-s c}^{\nu-a r i a l}\left(\nu, Q^{2}\right) d \nu \\
- & \int_{\nu_{0}}^{\infty} \mathcal{W}_{2 p-s c}^{\nu-a r i a l}\left(\nu, Q^{2}\right) d \nu=1
\end{aligned}
$$

