NuCo 2021 28th July 2021

Solar Neutrinos, sterile neutrinos

and Dark Matter Experiments

Collaborators

Prof. Shao-Feng Ge Jie Sheng

Pedro S. Pasquini

ppasquini@sjtu.edu.cn

State of Art Dark Matter Detectors

State of Art Dark Matter Detectors

Credit: Kavli Institute for the Physics and Mathematics of the Universe

XENON1T

INFN Laboratori Nazionali del Gran Sasso in Italy

Credit:Arxiv:2007.08796

State of Art Dark Matter Detectors

Credit: Kavli Institute for the Physics and Mathematics of the Universe

XENON1T

INFN Laboratori Nazionali del Gran Sasso in Italy

Credit:Arxiv:2007.08796

Credit:PandaX Collaboration

 $\mathsf{PandaX-II}$

 ${\sf China\ Jin-Ping\ Underground\ Laboratory}.$

State of Art Dark Matter Detectors

Credit:PandaX Collaboration

PandaX-II
China Jin-Ping Underground Laboratory.

Credit:Arxiv:2007.08796

XENONnT

State of Art Dark Matter Detectors

Credit:Arxiv:2007.08796

XENONnT

Credit:Arxiv:1806.02229

PandaX-4T

State of Art Dark Matter Detectors

Also: Lux-Zeplin Darwin

Credit:Arxiv:2007.08796

XENONnT

PandaX-4T

Credit:Arxiv:1806.02229

The aim is WIMP

But can we use it for Neutrino Physics?

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

Usually WIMPS: large masses (for neutrino standards) > 1 GeV.

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

Usually WIMPS: large masses (for neutrino standards) > 1 GeV.

Can observe Electron and Nuclear Recoil

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

Usually WIMPS: large masses (for neutrino standards) > 1 GeV.

Can observe Electron and Nuclear Recoil

Very low detection threshold ($\sim 1 \text{ keV}$).

Xenon works very well at detection:

Large Target density: 131 nucleons and 54 Electrons/atom

Xenon works very well at detection:

Large Target density: 131 nucleons and 54 Electrons/atom

Good at self-shielding (decrease in bkg)

Efficient Scintillator: $Xe_2^* \rightarrow 2Xe + \gamma \ (\sim 178 \ nm)$.

Xenon works very well at detection:

Large Target density: 131 nucleons and 54 Electrons/atom

Good at self-shielding (decrease in bkg)

Efficient Scintillator: $Xe_2^* \rightarrow 2Xe + \gamma \ (\sim 178 \ nm)$.

can distinguish nuclear recoil (NR) from electron recoil (ER)

The Detection Process

The Detection Process

Eur.Phys.J.C 77 (2017) 12, 881

- Dual-phase Time Projection Chamber (TPC) installed inside of a cryostat filled with Lq/Gas Xe.

The Detection Process

- Dual-phase Time Projection Chamber (TPC) installed inside of a cryostat filled with Lq/Gas Xe.
- Particle collides with LXe producing e^- or nuclear recoil forming Xe_2^* that decay promptly into 178 mm light (S1).

The Detection Process

- Dual-phase Time Projection Chamber (TPC) installed inside of a cryostat filled with Lq/Gas Xe.
- Particle collides with LXe producing e^- or nuclear recoil forming Xe_2^* that decay promptly into 178 mm light (S1).
- The ionized electrons are drifted by a field and ionizes the GXe which produces a second scintialion light (S2) at later time.

The Detection Process

- Dual-phase Time Projection Chamber (TPC) installed inside of a cryostat filled with Lq/Gas Xe.
- Particle collides with LXe producing e^- or nuclear recoil forming Xe_2^* that decay promptly into 178 mm light (S1).
- The ionized electrons are drifted by a field and ionizes the GXe which produces a second scintialion light (S2) at later time.
- S1/S2 produced by NR and ER are different! (can reach 99% discrimination power)

Neutrinos produces ER!

What About Neutrinos?

Neutrinos produces ER!

What About Neutrinos?

- Neutrinos can interact with electrons in Xe (for example, Weak CC).

Neutrinos produces ER!

What About Neutrinos?

- Neutrinos can interact with electrons in Xe (for example, Weak CC).
- Xenon binding energy: 12 eV (5p⁶) to 33.3 keV (1s²) $\longrightarrow E_{\nu} >$ 12 eV produces ER.

What About Neutrinos?

- Neutrinos can interact with electrons in Xe (for example, Weak CC).
- Xenon binding energy: 12 eV (5p⁶) to 33.3 keV (1s²) $\longrightarrow E_{\nu} >$ 12 eV produces ER.

Solar neutrinos have at least $E_{
u} \sim \mathcal{O}(100 \mathrm{keV})$

What About Neutrinos?

- Neutrinos can interact with electrons in Xe (for example, Weak CC).
- Xenon binding energy: 12 eV (5p⁶) to 33.3 keV (1s²) $\longrightarrow E_{\nu} >$ 12 eV produces ER.

Solar neutrinos have at least $E_{
u} \sim \mathcal{O}(100 \mathrm{keV})$

Very Intense Flux (specially PP chain ($E_{\nu} \lesssim 400 \text{ keV}$))

Astrophys.J. 835 (2017) 2, 202

Unfortunatelly events are obscured by bkg

Unfortunatelly events are obscured by ${\sf bkg}$

Unfortunatelly events are obscured by ${\sf bkg}$

Solar nu ≪ Bkg

Have we detected Solar Neutrinos in DM detectors?

Unfortunatelly events are obscured by ${\sf bkg}$

Unfortunatelly events are obscured by ${\sf bkg}$

Dominant background (specially at low energies) $^{214}{\rm Pb} \rightarrow e^- + ^{214}{\rm Bi}$.

Unfortunatelly events are obscured by ${\sf bkg}$

Dominant background (specially at low energies) $^{214}{\rm Pb} \rightarrow e^- + ^{214}{\rm Bi}$.

Unfortunatelly events are obscured by bkg

Dominant background (specially at low energies) $^{214}{\rm Pb} \rightarrow e^- + ^{214}{\rm Bi}.$

Xenon1T excess

New excess near threshold!

285 observed versus 232 \pm 15 expected \sim 3.5 σ .

285 observed versus 232 \pm 15 expected \sim 3.5 σ .

1) They check for a time dependency the excess.

- 1) They check for a time dependency the excess.
- 2) Changed threshold assumption

- 1) They check for a time dependency the excess.
- 2) Changed threshold assumption

Maybe statistics. Need more time.

Maybe a Tritium?

Unacounted background?

Maybe a Tritium?

Unacounted background?

1) They can rule out most radioactivity.

Unacounted background?

- 1) They can rule out most radioactivity.
- 2) From HTO and HT (cosmogenic activation and atm.)

Unacounted background?

- 1) They can rule out most radioactivity.
- 2) From HTO and HT (cosmogenic activation and atm.)

Unlikely by estimations, but it is hard to measure presence of T.

BSM physics?

New physics

BSM physics?

New physics

Let's assume it is **not** bkg nor statistics

New physics

Let's assume it is **not** bkg nor statistics

Bonus: We can find new effects that can be constrained in DM exp.

New physics

Let's assume it is **not** bkg nor statistics

Bonus: We can find new effects that can be constrained in DM exp.

We proposed new physics related to (solar) neutrinos

PLB 810 (2020) 135787

$$rac{d\sigma}{dT_r} = rac{m_e G_F^2}{4\pi} \left[g_2^2 + g_1^2 \left(1 - rac{T_r}{E_
u}
ight)^2 - g_1 g_2 rac{m_e T_r}{E_
u^2}
ight]$$

$$\frac{d\sigma}{dT_r} = \frac{m_e G_F^2}{4\pi} \left[g_2^2 + g_1^2 \left(1 - \frac{T_r}{E_\nu} \right)^2 - g_1 g_2 \frac{m_e T_r}{E_\nu^2} \right]$$

>

$$\frac{d\sigma}{dT_r} = \frac{m_e G_F^2}{4\pi} \left[g_2^2 + g_1^2 \left(1 - \frac{T_r}{E_\nu} \right)^2 - g_1 g_2 \frac{m_e T_r}{E_\nu^2} \right]$$

$$v_e \longrightarrow \frac{g^2}{q^2 - m_Z^2} \rightarrow -\frac{g^2}{m_Z^2}$$

$$\frac{d\sigma}{dT_r} = \frac{m_e G_F^2}{4\pi} \left[g_2^2 + g_1^2 \left(1 - \left(\frac{T_r}{E_\nu} \right)^2 - g_1 g_2 \frac{m_e T_r}{E_\nu^2} \right) \right]$$

$$\frac{\sigma}{\sigma} = \frac{\sigma}{dT_r} = \frac{\sigma}{dT_r} = \frac{\sigma}{dT_r} \approx \text{mostly Flat}$$

$$\frac{d\sigma}{dT_r} = \frac{m_e G_F^2}{4\pi} \left[g_2^2 + g_1^2 \left(1 - \frac{T_r}{E_\nu} \right)^2 - g_1 g_2 \frac{m_e T_r}{E_\nu^2} \right]$$

$$\frac{d\sigma}{dT_r} = \frac{m_e G_F^2}{4\pi} \left[g_2^2 + g_1^2 \left(1 - \frac{T_r}{E_\nu} \right)^2 - g_1 g_2 \frac{m_e T_r}{E_\nu^2} \right]$$

$$v_e$$

$$\frac{d\sigma}{dT_r} = 2m_e T_r \frac{(y_S^{\nu} y_S^e)^2 (2m_e + T_r) + (y_P^{\nu} y_P^e)^2 T_r}{8\pi E_{\nu}^2 (2m_e T_r + m_{\phi}^2)^2}$$

$$v_e$$

New Interactions

$$\frac{d\sigma}{dT_r} = (2m_e T_r + m_s^2) \frac{(y_S^{\nu} y_S^e)^2 (2m_e + T_r) + (y_P^{\nu} y_P^e)^2 T_r}{8\pi E_v^2 (2m_e T_r + m_s^2)^2}$$

$$\frac{d\sigma}{dT_r} = (2m_e T_r + m_s^2) \frac{(y_s^{\nu} y_s^e)^2 (2m_e + T_r) + (y_p^{\nu} y_p^e)^2 T_r}{8\pi E_{\nu}^2 (2m_e T_r + m_{\phi}^2)^2}$$

$$\mathcal{L}_{\text{int}} = \bar{\nu}(y_S^{\nu} + \gamma_5 y_P^{\nu})\phi\nu_s + \bar{e}(y_S^e + \gamma_5 y_P^e)e\phi + h.c.,$$

$$\frac{d\sigma}{dT_r} = (2m_e T_r + m_s^2) \frac{(y_S^{\nu} y_S^e)^2 (2m_e + T_r) + (y_P^{\nu} y_P^e)^2 T_r}{8\pi E_{\nu}^2 (2m_e T_r + m_{\phi}^2)^2}$$

Sterile neutrino gives low E enhancement!

$$\frac{d\sigma}{dT_r} = (2m_e T_r + m_s^2) \frac{(y_s^{\nu} y_s^e)^2 (2m_e + T_r) + (y_P^{\nu} y_P^e)^2 T_r}{8\pi E_{\nu}^2 (2m_e T_r + m_{\phi}^2)^2}$$

Sterile neutrino gives low E enhancement!

$$\frac{d\sigma}{dT_r} = (2m_e T_r + m_s^2) \frac{(y_s^{\nu} y_s^e)^2 (2m_e + T_r) + (y_P^{\nu} y_P^e)^2 T_r}{8\pi E_{\nu}^2 (2m_e T_r + m_{\phi}^2)^2}$$

If: $m_s, m_\phi = 0$ at low T_r

Scalar $\frac{m_e}{T_r}$ but Pseudo-Scalar const.

$$\frac{d\sigma}{dT_r} = (2m_e T_r + m_s^2) \frac{(y_S^{\nu} y_S^e)^2 (2m_e + T_r) + (y_P^{\nu} y_P^e)^2 T_r}{8\pi E_{\nu}^2 (2m_e T_r + m_{\phi}^2)^2}$$

If: m_s , $m_\phi = 0$ at low T_r

Scalar $\frac{m_e}{T_r}$ but Pseudo-Scalar const.

If: $m_s \gtrsim 80$ keV at low T_r

Scalar $\frac{m_s^2}{T_r^2}$ and Pseudo-Scalar $\frac{m_s}{T_r}$

$$\frac{d\sigma}{dT_r} = (2m_e T_r + m_s^2) \frac{(y_S^{\nu} y_S^e)^2 (2m_e + T_r) + (y_P^{\nu} y_P^e)^2 T_r}{8\pi E_{\nu}^2 (2m_e T_r + m_{\phi}^2)^2}$$

If: $m_s, m_\phi = 0$ at low T_r

Scalar $\frac{m_e}{T_r}$ but Pseudo-Scalar const.

If: $m_s \gtrsim 80$ keV at low T_r

Scalar $\frac{m_s^2}{T_r^2}$ and Pseudo-Scalar $\frac{m_s}{T_r}$

 $m_\phi>0$ needed for NSI bounds.

Another important detail for $m_s > 0$

Another important detail for $m_s>0$

Kinematic cuts!

Another important detail for $m_s > 0$

Kinematic cuts!

Conservation of momentum/energy requires a minimum kinetic energy

Another important detail for $m_s > 0$

Kinematic cuts!

Conservation of momentum/energy requires a minimum kinetic energy

1) Only the CM energy $s=m_{\rm e}(m_{\rm e}+2E_{\nu})$ can be transformed into m_s^2

Kinematic cuts

Another important detail for $m_s > 0$

Kinematic cuts!

Conservation of momentum/energy requires a minimum kinetic energy

- 1) Only the CM energy $s=m_{\rm e}(m_{\rm e}+2E_{\nu})$ can be transformed into m_s^2
- 2) Also, if all energy becomes m_s^2 , final momentum is not conserved!

Kinematic cuts

Another important detail for $m_s > 0$

Kinematic cuts!

Conservation of momentum/energy requires a minimum kinetic energy

- 1) Only the CM energy $s=m_e(m_e+2E_{\nu})$ can be transformed into m_s^2
- 2) Also, if all energy becomes m_s^2 , final momentum is not conserved!

Kinematic cuts

Another important detail for $m_s > 0$

Kinematic cuts!

Conservation of momentum/energy requires a minimum kinetic energy

- 1) Only the CM energy $s=m_{\rm e}(m_{\rm e}+2E_{\nu})$ can be transformed into m_s^2
 - 2) Also, if all energy becomes m_s^2 , final momentum is not conserved!

Interesting! If we have enough resolution, we can even get the mass of m_s from DM experiments

(A bit trickier due to nuclear effects and detector resolution)

couplings $O(10^{-13})$

$$y_s^{
u}, y_p^{
u} < 10^{-3}$$
 at 95% C. L. from Meson decay PRD 93 (2016) 5, 053007

$$y_s^e, y_p^e < 5 imes 10^{-10}$$
 at 95% C. L. from BBN _{PRD 99} (2019) 1, 015016

$$y_s^{
u}, y_p^{
u} < 10^{-3}$$
 at 95% C. L. from Meson decay PRD 93 (2016) 5, 053007

$$\Rightarrow |y^{\nu}y^{e}| < 5 \times 10^{-13}$$
 $y_{s}^{e}, y_{p}^{e} < 5 \times 10^{-10}$ at 95% C. L. from BBN PRD 99 (2019) 1, 015016

$$y_s^{
u}, y_p^{
u} < 10^{-3}$$
 at 95% C. L. from Meson decay PRD 93 (2016) 5, 053007

$$\implies |y^{\nu}y^{e}| < 5 \times 10^{-13}$$

$$y_s^e, y_p^e < 5 \times 10^{-10}$$
 at 95% C. L. from BBN _{PRD 99} (2019) 1, 015016

Caveat: Those bounds usually assume $m_{\nu}=0,\ y^{\nu}$ or $y^{e}\neq 0$ at a time

$$y_s^{
u}, y_p^{
u} < 10^{-3}$$
 at 95% C. L. from Meson decay PRD 93 (2016) 5, 053007

$$\Longrightarrow |y^{\nu}y^{e}| < 5 \times 10^{-13}$$

$$y_s^e, y_p^e < 5 imes 10^{-10}$$
 at 95% C. L. from BBN _{PRD 99} (2019) 1, 015016

Caveat: Those bounds usually assume $m_{\nu}=0,\ y^{\nu}$ or $y^{e}\neq 0$ at a time

There are also stronger bounds from stellar cooling, but they are model dependent

16 / 20

$$y_s^{
u}, y_p^{
u} < 10^{-3}$$
 at 95% C. L. from Meson decay PRD 93 (2016) 5, 053007

$$\Rightarrow |y^{\nu}y^{e}| < 5 \times 10^{-13}$$
 $y_{s}^{e}, y_{p}^{e} < 5 \times 10^{-10}$ at 95% C. L. from BBN PRD 99 (2019) 1, 015016

Caveat: Those bounds usually assume $m_{\nu}=0,\ y^{\nu}$ or $y^{e}\neq 0$ at a time

There are also stronger bounds from stellar cooling, but they are model dependent PRD 102 (2020) 7, 075015

NSI constrains for vector mediators: $\epsilon_{es} = \frac{g^{\nu}g^{e}}{4\sqrt{2}G_{\rm F}m_{Z'}^{2}} \Longrightarrow |g^{\nu}g^{e}| < 10^{-14}\left(\frac{m_{Z'}}{\rm keV}\right)^{2}$ for $\epsilon_{e\alpha}$ bounds, but it is hard to find bounds for sterile couplings. JHEP 01 (2021) 114

Final thoughts

Electron Recoil Events on Xenon-based (DM) detectors can be used to search for ν physics

Final thoughts

Electron Recoil Events on Xenon-based (DM) detectors can be used to search for u physics

Solar neutrinos can produce events, but obscured by background (hopefully in future?)

Final thoughts

Electron Recoil Events on Xenon-based (DM) detectors can be used to search for u physics

Solar neutrinos can produce events, but obscured by background (hopefully in future?)

The Xenon1T excess can be explained by $\nu\nu_s\phi$.

Final thoughts

Electron Recoil Events on Xenon-based (DM) detectors can be used to search for u physics

Solar neutrinos can produce events, but obscured by background (hopefully in future?)

The Xenon1T excess can be explained by $\nu\nu_s\phi$.

Works very well for: light mediator (\sim 10 keV) and massive sterile neutrinos (\sim 100 keV) - from solar neutrino flux.

Final thoughts

Electron Recoil Events on Xenon-based (DM) detectors can be used to search for u physics

Solar neutrinos can produce events, but obscured by background (hopefully in future?)

The Xenon1T excess can be explained by $\nu\nu_s\phi$.

Works very well for: light mediator (\sim 10 keV) and massive sterile neutrinos (\sim 100 keV) - from solar neutrino flux.

In any case: bounds on such couplings are interesting and are competitive for DM exp.

Thanks for your attention

Backup Slides: Preliminary Bounds

Can't be (usual) CDM

Can it be Cold Dark Matter signal?

Can't be (usual) CDM

$$\chi + e^- \longrightarrow \chi + e^-$$

$$\chi + e^- \longrightarrow \chi + e^-$$

$$ec{v}_e^i = ec{v}_{
m CM} + rac{\mu}{m_e} ec{v}_{
m rel}$$
 and $ec{v}_e^f = ec{v}_{
m CM} - rac{\mu}{m_e} ec{v}_{
m rel}$

$$\chi + e^- \longrightarrow \chi + e^-$$

$$ec{v}_e^i = ec{v}_{
m CM} + rac{\mu}{m_e} ec{v}_{
m rel}$$
 and $ec{v}_e^f = ec{v}_{
m CM} - rac{\mu}{m_e} ec{v}_{
m rel}$

$$T_r = \frac{m_e(v_e^f)^2}{2} - \frac{m_e(v_e^i)^2}{2} = 2\mu \vec{v}_{\rm CM} \cdot \vec{v}_{\rm rel}$$

$$\chi + e^- \longrightarrow \chi + e^-$$

$$ec{v}_e^i = ec{v}_{
m CM} + rac{\mu}{m_e} ec{v}_{
m rel}$$
 and $ec{v}_e^f = ec{v}_{
m CM} - rac{\mu}{m_e} ec{v}_{
m rel}$

$$\mathcal{T}_r = rac{m_e(v_e^i)^2}{2} - rac{m_e(v_e^i)^2}{2} = 2\mu \vec{v}_{\mathrm{CM}} \cdot \vec{v}_{\mathrm{rel}} \qquad \Longrightarrow \mathcal{T}_r^{\mathrm{max}} = 2m_e v_{\mathrm{DM}} (v_{\mathrm{DM}} - v_e) \ ext{(for } m_\chi >> m_e)$$

$$\chi + e^- \longrightarrow \chi + e^-$$

$$ec{v}_e^i = ec{v}_{
m CM} + rac{\mu}{m_e} ec{v}_{
m rel}$$
 and $ec{v}_e^f = ec{v}_{
m CM} - rac{\mu}{m_e} ec{v}_{
m rel}$

$$T_r = rac{m_e(v_e^f)^2}{2} - rac{m_e(v_e^i)^2}{2} = 2\mu \vec{v}_{\mathrm{CM}} \cdot \vec{v}_{\mathrm{rel}} \qquad \Longrightarrow T_r^{\mathrm{max}} = 2m_e v_{\mathrm{DM}} (v_{\mathrm{DM}} - v_e) \ (ext{for } m_\chi >> m_e)$$

 $2m_e \sim 10^3$ keV and DM halo with $v_{
m DM} \lesssim 2 imes 10^{-3}$

$$\chi + e^- \longrightarrow \chi + e^-$$

$$ec{v}_e^i = ec{v}_{
m CM} + rac{\mu}{m_e} ec{v}_{
m rel}$$
 and $ec{v}_e^f = ec{v}_{
m CM} - rac{\mu}{m_e} ec{v}_{
m rel}$

$$T_r = rac{m_e(v_e^f)^2}{2} - rac{m_e(v_e^i)^2}{2} = 2\mu \vec{v}_{\mathrm{CM}} \cdot \vec{v}_{\mathrm{rel}} \qquad \Longrightarrow T_r^{\mathrm{max}} = 2m_e v_{\mathrm{DM}} (v_{\mathrm{DM}} - v_e) \ (ext{for } m_\chi >> m_e)$$

$$2m_e \sim 10^3$$
 keV and DM halo with $v_{
m DM} \lesssim 2 imes 10^{-3}$ $T_r^{
m max} < 0.2$ keV

Can't be (usual) CDM

$$\chi + e^- \longrightarrow \chi + e^-$$

$$ec{v}_e^i = ec{v}_{
m CM} + rac{\mu}{m_e} ec{v}_{
m rel}$$
 and $ec{v}_e^f = ec{v}_{
m CM} - rac{\mu}{m_e} ec{v}_{
m rel}$

$$T_r = rac{m_e(v_e^f)^2}{2} - rac{m_e(v_e^i)^2}{2} = 2\mu \vec{v}_{\mathrm{CM}} \cdot \vec{v}_{\mathrm{rel}} \qquad \Longrightarrow T_r^{\mathrm{max}} = 2m_e v_{\mathrm{DM}} (v_{\mathrm{DM}} - v_e) \ (ext{for } m_\chi >> m_e)$$

$$2m_e\sim 10^3$$
 keV and DM halo with $v_{
m DM}\lesssim 2 imes 10^{-3}$ $T_r^{
m max}<0.2$ keV In fact should be $v_\chi\gtrsim 0.1$ (PRD 102 (2020) 9, 095002))

$$\chi + e^- \longrightarrow \chi + e^-$$

$$ec{v}_e^i = ec{v}_{
m CM} + rac{\mu}{m_e} ec{v}_{
m rel}$$
 and $ec{v}_e^f = ec{v}_{
m CM} - rac{\mu}{m_e} ec{v}_{
m rel}$

$$T_r = \frac{m_e(v_e^f)^2}{2} - \frac{m_e(v_e^i)^2}{2} = 2\mu \vec{v}_{\rm CM} \cdot \vec{v}_{\rm rel} \qquad \Longrightarrow T_r^{\rm max} = 2m_e v_{\rm DM} (v_{\rm DM} - v_e) \ ({
m for} \ m_\chi >> m_e)$$

$$2m_{
m e}\sim 10^3$$
 keV and DM halo with $v_{
m DM}\lesssim 2 imes 10^{-3}$ $T_{
m e}^{
m max}<0.2$ keV

In fact should be $v_Y \gtrsim 0.1$ (PRD 102 (2020) 9, 095002)

Note: Exotic scenarios are allowed (eg $\chi + \chi + e \rightarrow \chi + e$ PRL 125 (2020) 13, 131301)