
NuCo 2021
28th July 2021

Solar Neutrinos,
sterile neutrinos
and Dark Matter Experiments

Pedro S. Pasquini
ppasquini@sjtu.edu.cn

Collaborators:

Prof. Shao-Feng Ge
Jie Sheng

1 / 20



A flourish of DM experiments

State of Art Dark Matter Detectors

2 / 20



A flourish of DM experiments

State of Art Dark Matter Detectors

Credit: Kavli Institute for the Physics and Mathematics of the Universe

XENON1T
INFN Laboratori Nazionali del Gran Sasso in Italy

Credit:Arxiv:2007.08796

2 / 20

https://arxiv.org/abs/2007.08796


A flourish of DM experiments

State of Art Dark Matter Detectors

Credit: Kavli Institute for the Physics and Mathematics of the Universe

XENON1T
INFN Laboratori Nazionali del Gran Sasso in Italy

Credit:Arxiv:2007.08796

Credit:PandaX Collaboration

PandaX-II
China Jin-Ping Underground Laboratory.

2 / 20

https://arxiv.org/abs/2007.08796
https://pandax.sjtu.edu.cn/


A flourish of DM experiments

State of Art Dark Matter Detectors

XENONnT

Credit:Arxiv:2007.08796

Credit:PandaX Collaboration

PandaX-II
China Jin-Ping Underground Laboratory.

2 / 20

https://arxiv.org/abs/2007.08796
https://pandax.sjtu.edu.cn/


A flourish of DM experiments

State of Art Dark Matter Detectors

XENONnT

Credit:Arxiv:2007.08796

Credit:PandaX Collaboration

PandaX-II
China Jin-Ping Underground Laboratory.

Credit:Arxiv:1806.02229

PandaX-4T
2 / 20

https://arxiv.org/abs/2007.08796
https://pandax.sjtu.edu.cn/
https://arxiv.org/abs/1806.02229


A flourish of DM experiments

State of Art Dark Matter Detectors

XENONnT

Credit:Arxiv:2007.08796

Credit:PandaX Collaboration

PandaX-II
China Jin-Ping Underground Laboratory.

Credit:Arxiv:1806.02229

PandaX-4T

Also:
Lux-Zeplin

Darwin

2 / 20

https://arxiv.org/abs/2007.08796
https://pandax.sjtu.edu.cn/
https://arxiv.org/abs/1806.02229


The aim is WIMP

Goal of The Experiments: DM

3 / 20



The aim is WIMP

Goal of The Experiments: DM

But can we use it for Neutrino Physics?

3 / 20



The aim is WIMP

Goal of The Experiments: DM

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

3 / 20



The aim is WIMP

Goal of The Experiments: DM

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

Usually WIMPS: large masses (for neutrino standards) > 1 GeV.

3 / 20



The aim is WIMP

Goal of The Experiments: DM

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

Usually WIMPS: large masses (for neutrino standards) > 1 GeV.

Can observe Electron and Nuclear Recoil

3 / 20



The aim is WIMP

Goal of The Experiments: DM

But can we use it for Neutrino Physics?

Very Large Target mass: > 500 kg to a few tons

Usually WIMPS: large masses (for neutrino standards) > 1 GeV.

Can observe Electron and Nuclear Recoil

Very low detection threshold (∼ 1 keV).
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Xenon works very well at detection:

Large Target density: 131 nucleons and 54 Electrons/atom

Good at self-shielding (decrease in bkg)

Efficient Scintillator: Xe∗2 → 2Xe+γ (∼178 nm).

can distinguish nuclear recoil (NR) from electron recoil (ER)
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- Dual-phase Time Projection Chamber (TPC)

installed inside of a cryostat filled with Lq/Gas Xe.

- Particle collides with LXe producing e− or nuclear
recoil forming Xe∗2 that decay promptly into 178 mm
light (S1).
- The ionized electrons are drifted by a field and ionizes
the GXe which produces a second scintialion light (S2)
at later time.

- S1/S2 produced by NR and ER are different! (can
reach 99% discrimination power)
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Neutrinos produces ER!

What About Neutrinos?

- Neutrinos can interact with
electrons in Xe (for example,
Weak CC).

- Xenon binding energy: 12
eV (5p6) to 33.3 keV (1s2)
−→ Eν > 12 eV produces ER.

Solar neutrinos have at least
Eν ∼ O(100keV)

Very Intense Flux (specially
PP chain (Eν . 400 keV))
Astrophys.J. 835 (2017) 2, 20210 1 100 101
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Solar nu � Bkg

Have we detected Solar Neutrinos in DM detectors?

From: Phys.Rev.D 102 (2020) 7, 072004

Unfortunatelly events are obscured by bkg

Tr keV
25 100 175

Dominant background (specially at low
energies) 214Pb→ e− + 214Bi.
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285 observed versus 232±15 expected ∼ 3.5σ.

Statistics maybe?

1) They check for a
time dependency the
excess.

2) Changed threshold
assumption

Maybe statistics. Need
more time.
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Maybe a Tritium?

Unacounted background?

1) They can rule out
most radioactivity.

2) From HTO and HT
(cosmogenic activation
and atm.)

Unlikely by estimations,
but it is hard to measure
presence of T.
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BSM physics?

New physics

Let’s assume it is not bkg nor statistics

Bonus: We can find new effects that can be constrained in DM exp.

We proposed new physics related to (solar) neutrinos
PLB 810 (2020) 135787
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DM experiments

(A bit trickier due to nuclear
effects and detector resolution)
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=⇒ |yνy e | < 5× 10−13

Caveat: Those bounds usually assume mν = 0, yν or y e 6= 0 at a time

There are also stronger bounds from stellar cooling, but they are model dependent
PRD 102 (2020) 7, 075015

NSI constrains for vector mediators: εes = gνg e

4
√
2GFm

2
Z ′

=⇒ |gνg e | < 10−14
(mZ ′
keV

)2
for

εeα bounds, but it is hard to find bounds for sterile couplings. JHEP 01 (2021) 114
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Solar neutrinos can produce events, but obscured by background (hopefully in future?)

The Xenon1T excess can be explained by ννsφ.

Works very well for: light mediator (∼ 10 keV) and massive sterile neutrinos (∼ 100 keV) -
from solar neutrino flux.

In any case: bounds on such couplings are interesting and are competitive for DM exp.
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Backup Slides: Preliminary Bounds
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~v ie = ~vCM + µ
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Tr = me(v f
e )
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2 − me(v i
e)

2

2 = 2µ~vCM · ~vrel =⇒ Tmax
r = 2mevDM(vDM − ve)

(for mχ >> me)

2me ∼ 103 keV and DM halo with vDM . 2× 10−3

Tmax
r < 0.2 keV

In fact should be vχ & 0.1 (PRD 102 (2020) 9, 095002))
Note: Exotic scenarios are allowed (eg χ + χ + e → χ + e PRL 125 (2020) 13, 131301)
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