STUDYING FINAL STATE INTERACTIONS WITH NEUTRINO EXPERIMENTS

Enrique Arrieta Díaz Universidad del Magdalena

NuCo 2021

July 28th 2021

INTRODUCTION

Motivation

- What are Final State Interactions (FSI)?
- Why are FSI important in neutrino oscillations experiments?
- The role of FSI models in neutrino interactions simulators
- Progress by neutrino experiments on FSI model tuning
- Final remarks

WHAT ARE FSI

Big Picture

Neutrinos are studied via their interactions with matter

Neutrino detectors are made of various nuclei –

Hydrogen Helium Carbon Oxygen Iron Lead

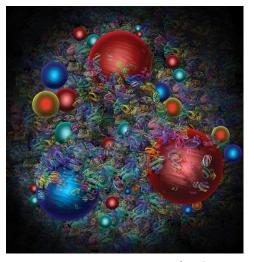
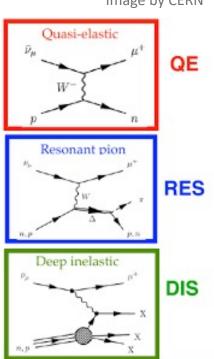


Image by CERN

- Neutrino interactions inside nuclei are more than meets the eye (basics) **Charged Current**
 - Quasi elastic (QE)

$$v_l + n \rightarrow l^- + p$$


Resonant pion production (Res) $v_l + N \rightarrow l^- + \Delta$

Nuclei are busy quantum beasts

Deep inelastic (DIS)

$$v_l + N \rightarrow l^- + X$$

Most relevant neutrino – nuclei primary interactions

WHAT ARE FSI

Are QE, Res or DIS observed by neutrino detectors?

$$v_l + n \rightarrow l^- + p$$

RHS of the interactions

Particles detected

Not necessarily the same

$$v_l + N \rightarrow l^- + \Delta$$

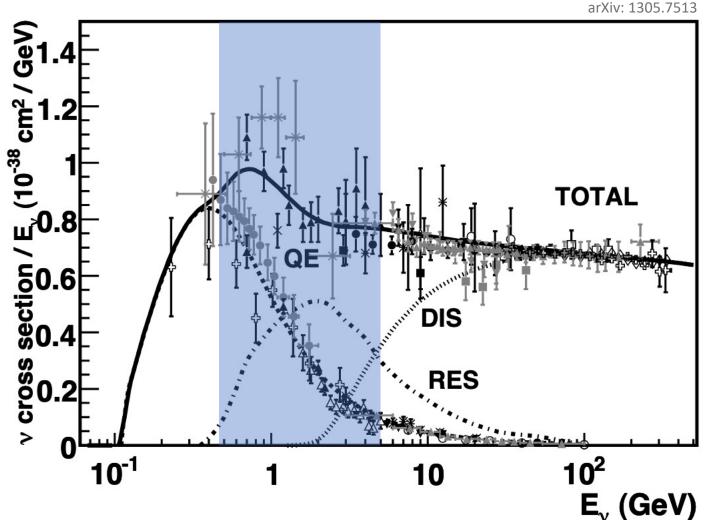
$$v_l + N \rightarrow l^- + X$$

- RHS particles could
 - Have secondary interactions inside the nucleus \dashv

Be absorbed by the nucleus Create additional particles

- Exit the nucleus and be invisible for detectors (e.g. no charge, low energy)
- The FSI output is what neutrino detectors observe

Neutrino experiments must identify primary interaction from FSI


FSI IMPORTANCE

Neutrino Experiments

Neutrino charged current cross sections

Neutrino oscillations:
Precise number of initial neutrinos

Accurate knowledge of cross sections: Crucial for counting events

• Most neutrino oscillations experiments: $E_{\nu} = [0.5,5] GeV$

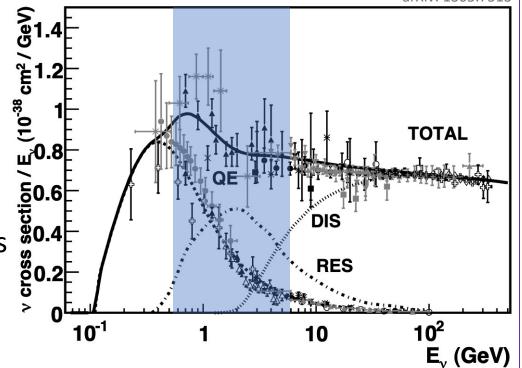
FSI IMPORTANCE

Neutrino Experiments

Systematic uncertainties > statistical uncertainties

Cross section uncertainties are large

- Neutrino oscillations experiments
 - Two detectors: Near (ND) and Far (FD)
 - ND constrains flux & interaction cross sections
 - FD observes neutrinos after oscillations



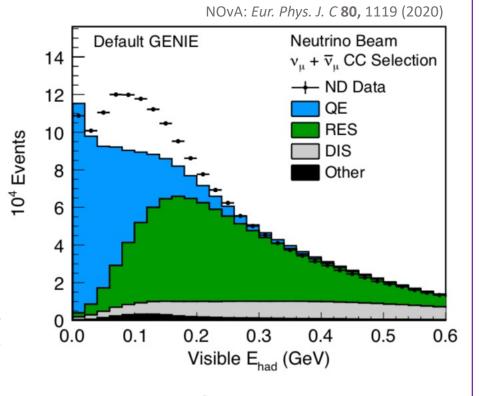
Neutrino – nuclei interactions around 1 GeV are challenging

To measure experimentally

Neutrino Simulators

- Neutrino experiments rely on simulations to develop analysis tools
 - Neutrino flux (e.g. Fluka, Nucl. Data Sheets 120, 211 (2014))
 - Interactions (e.g. GENIE, Nucl. Instrum. Methods Phys. Res., Sect. A 614, 87 (2010))
 - Detectors (e.g. GEANT4, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003))
- Interactions simulators built upon
 - Initial nuclear state Global relativistic Fermi gas (RFG) (Nucl. Phys. B43, 605 (1972))
 High momentum tail: short range nuclear interactions (Science 320, 1476 (2008))
 - QE (Phys. Rept. 3, 261 (1972))
 Res (Annals Phys. 133, 79 (1981))
 DIS (arXiv:hep-ex/0308007, Eur. Phys. J. C63, 1 (2009))
 - Reinteractions of resulting particles with nuclear medium

Effective cascade model (AIP Conf. Proc. 896, 178 (2007))


Simulators vs Data

Renowned theoretical models are in tension with latest data

- Traditional QE now understood better
 - Meson Exchange Currents (MEC)
 Phys. Rev. D88, 113007 (2013)

$$v_l + \underset{N'}{N} \rightarrow l^- + X$$
Meson

- Simulators allow for tuning of various processes
 - Each allowed variation must be understood Collectively

- Neutrino experiments are tuning simulators to better represent the data
- Theoreticians are seeking novel models to better represent the data

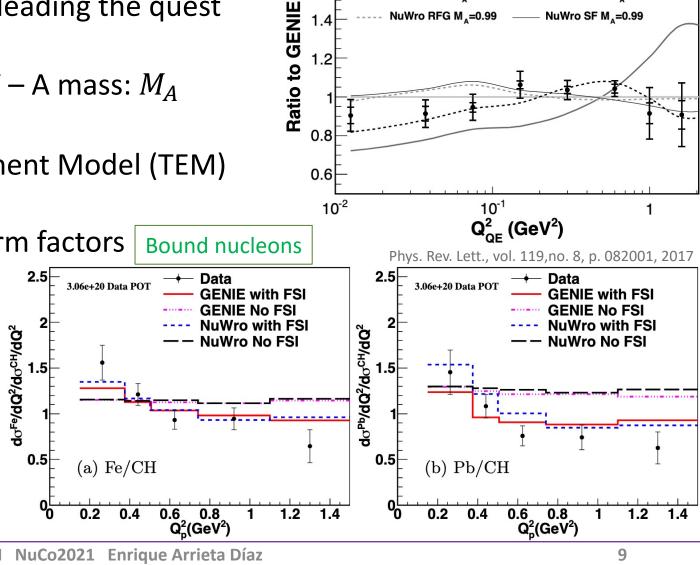
• MEC is currently the focus of the discussion

QE – like interactions

Active research area

Simulators vs Data

1.5 < E, < 10 GeV • Area Normalized


NuWro RFG M_A=0.99

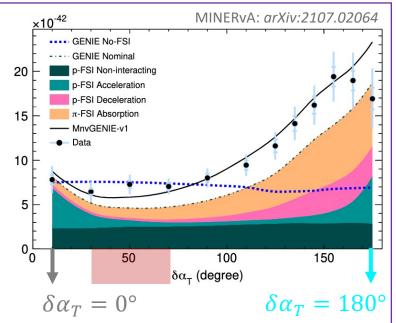
MINERvA: arXiv:2107.02064

NuWro RFG M₄=1.35 ----- NuWro RFG M₄=0.99 + TEM

— NuWro SF M_x=0.99

- Renowned theoretical models are in tension with latest data
- QE like cross section measurements leading the quest
 - Simulated Q_{OE}^2 parameterized by V A mass: M_A
 - Data favors a Transverse Enhancement Model (TEM) From MEC
 - Corrections to the magnetic form factors
 - Backgrounds from FSI
 - Primary π absorbed in nucleus
 - 0π events part of QE like signal





Progress by ν Experiments

- Transverse kinematic imbalance in charged currents
 - Muon transverse angle: $\delta \alpha_T$, sensitive to
 - FSI
 - Missing particles unaccounted momentum-

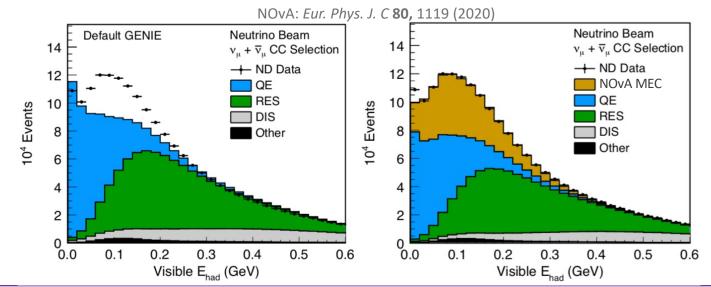
- No FSI flat region → isotropic Fermi motion
- Deceleration region for energy dissipating processes (particle absorption)
- Accelerating region for accelerating FSI (mainly protons)

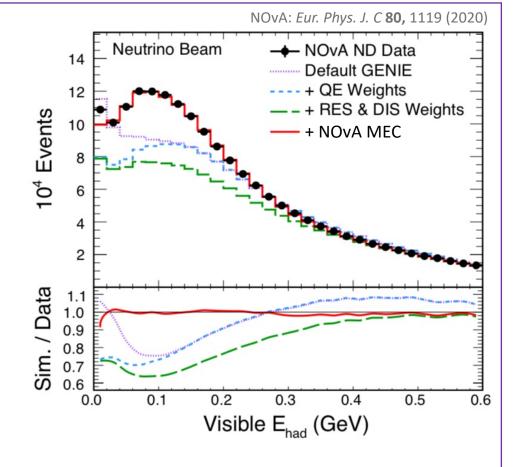
MnvGENIE

Minimizes cross section dependence on neutrino energy
Initial and final states effects directly probed

Described data within uncertainties

Improved MEC modeling




Progress by ν Experiments

- Adjusting cross section models
 - Incorporate external data constraints
 - Empirical MEC model (NOvA MEC)

Improvement!

- $M_A = 0.99 \, \frac{GeV}{c^2} \rightarrow M_A = 1.04 \, \frac{GeV}{c^2}$
- Nuclear weights from MINERvA
- Reduction of non resonant single pion

Default GENIE:

MEC events deficit 5% excess at low energies

FINAL REMARKS

- Neutrino experiments leading the quest for better FSI models
- Discoveries of novel processes challenge theoretical descriptions
- Improved simulations reduce cross section uncertainties on neutrino oscillations measurements
- Mixture of new results and model tuning are currently used
 - The goal: Theoretical descriptions of FSI from physics principles that reproduce the data
 - Active research area already producing promising results
- Opportunities for undergraduate and graduate students (or physicists) to contribute

THANK YOU!

earrieta@unimagdalena.edu.co