Physics opportunities of coherent elastic neutrino-nucleus scattering experiments

Diego Aristizabal USM

CE_V**NS**

CE $_{\nu}$ NS occurs when the neutrino energy $E_{_{\nu}}$ is such that nucleon amplitudes sum up coherently \Rightarrow cross section enhancement

$$\bullet$$
 CE ν NS

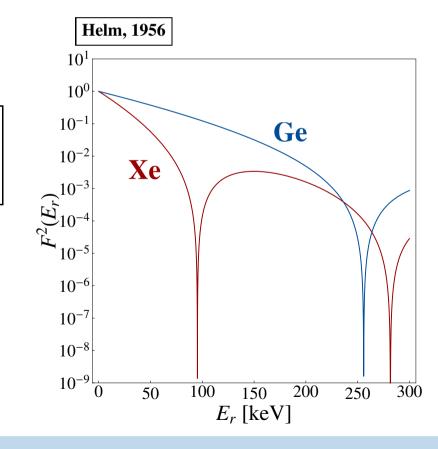
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- •

What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector


Final remarks

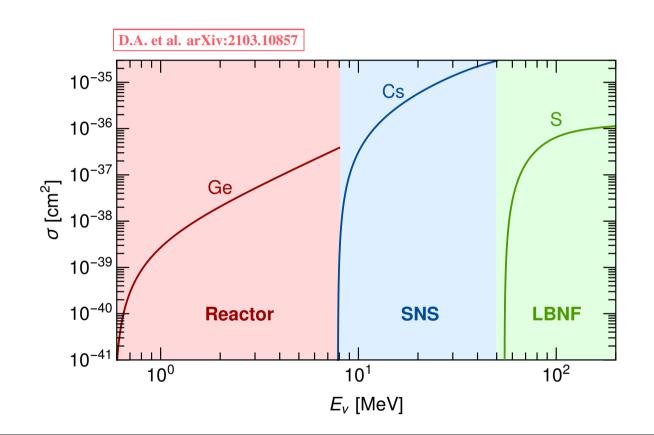
$$\lambda \gtrsim R_N \ \Rightarrow \ q \lesssim 200 \ {\rm MeV}$$

$$E_R = q^2/2m_N \ \Rightarrow \ E_\nu \simeq \sqrt{E_R^{\rm max} m_N/2}$$

$$E_\nu \lesssim 200 \ {\rm MeV}$$

Freedman, 1974

$$\frac{d\sigma_{v}}{dE_{R}} = \frac{G_{F}^{2}}{4\pi} Q_{\text{SM}}^{2} m_{N} \left(1 - \frac{E_{r} m_{N}}{2E_{v}^{2}}\right) \underbrace{F^{2}(E_{r})}_{\text{Form factor}}$$


$$Q_{\text{SM}}^2 = [N - (1 - s_W^2)Z]^2 \simeq N^2$$

Neutrino sources and CEvNS "regimes"

"Laboratory" sources: Reactor neutrinos, SNS neutrinos, LBNF (NuMI)

"Astrophysical" sources: Solar, DSNB, Atmospheric, SN burst

Entering the "high-energy" window requires a substantial amount of ν 's in the low-enery tail LBNF provides that!

● CE_VNS

Neutrino sources and CEvNS "regimes"

- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

CEvNS with the *v*BDX-DRIFT detector

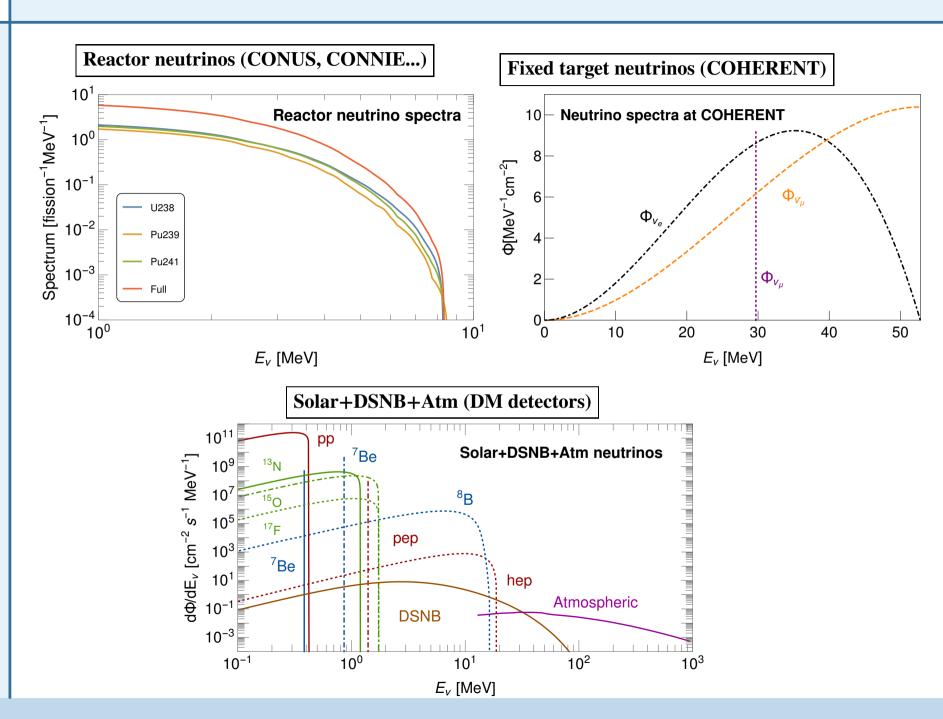
Final remarks

CEVNS environments

● CE_VNS

Neutrino sources and CEvNS "regimes"

CEvNS environments


- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

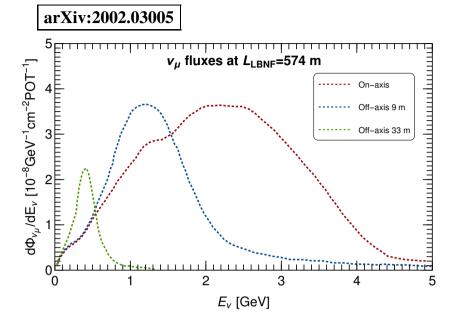
NMM in multi-ton DM detectors

CPV at COHERENT

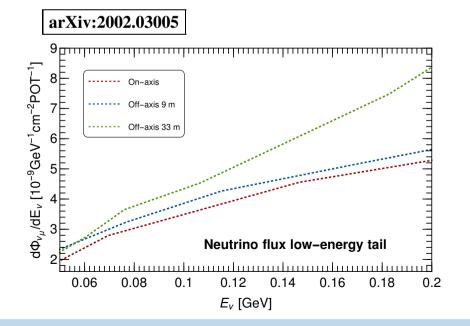
CEvNS with the ν BDX-DRIFT detector

Final remarks

LBNF neutrino beamline low-energy tail


- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors


CPV at COHERENT

CEvNS with the *v*BDX-DRIFT detector

Final remarks

Full spectrum $\Rightarrow n_{\nu} \simeq 10^{14}/\text{year/cm}^2$ Available e.g for $\nu - e$ scattering

Low-energy tail: $n_{\rm v} \simeq 10^{12}/{\rm year/cm^2}$ $\sigma_{\rm CEvNS} \sim N^2$

Sizable number of events!

Physics opportunities

Standard Physics

- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail

Physics opportunities

- Strategy
- What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector

Final remarks

- Determination of the root-mean-square radius of neutron distributions
 - ⇒ Neutron skin ⇒ Neutron Stars EoS
 Talk by Carlo Giunti
- Improve understanding of EW parameters \Rightarrow Precise determination of the weak mixing angle at $\mu \simeq 1 \, \text{MeV}$ Miranda et al. 1806.01310

Non-standard physics

- New dof \Rightarrow Light fermions (sterile ν 's) Talk by Ian Shoemaker
- New forces (for some reason) escaping observation at high intensity and/or high energy experiments

 Marfatia & Liao/Dutta, Liao & Strigari/Shoemaker

Kosmas, Papoulais/Aristizabal, De Romeri & Rojas

Giunti et al.

(Incomplete list!)

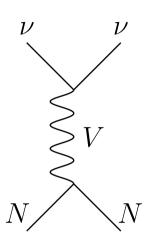
Strategy

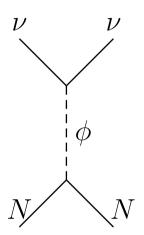
● CE_VNS

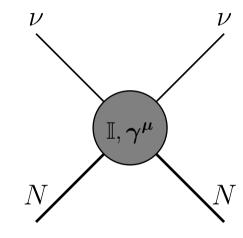
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities

Strategy

What to expect


NMM in multi-ton DM detectors


CPV at COHERENT


CEvNS with the ν BDX-DRIFT detector

Final remarks

Select interactions: V+S (light+Eff)

Environment

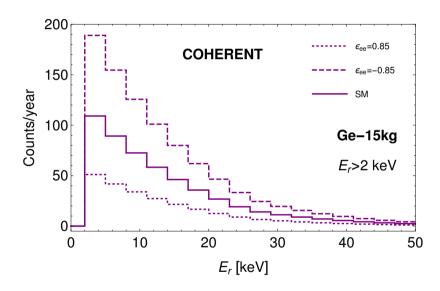
SNS, DM direct detection detectors, reactors, LBNF

What to expect

- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

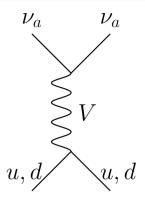
NMM in multi-ton DM detectors

CPV at COHERENT

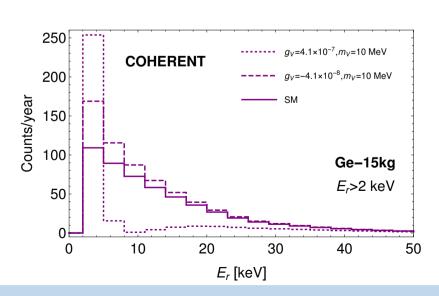

CEvNS with the *v*BDX-DRIFT detector

Final remarks

Each scenario comes along with


distinctive features

signal degeneracies are expected!


Light limit

Spectral distortions

Effective limit

Global enhancements

● CE_VNS

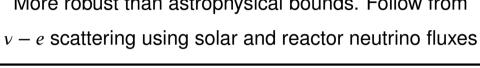
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors

- NMM limits
- Nuclear recoils
- Electron recoils

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector


Final remarks

NMM in multi-ton **DM** detectors

NMM limits

Laboratory limits

More robust than astrophysical bounds. Follow from

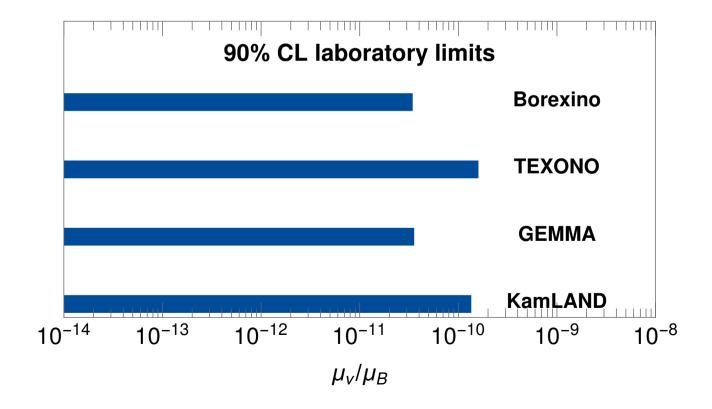
Neutrino sources and CEvNS "regimes"

- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy

● CE_VNS

What to expect

NMM in multi-ton DM detectors


NMM limits

- Nuclear recoils
- Electron recoils

CPV at COHERENT

CEvNS with the vBDX-DRIFT detector

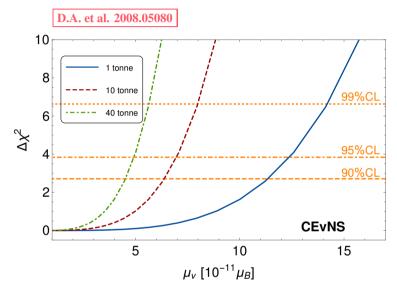
Final remarks

Nuclear recoils

Sensitivities in multi-ton DM detectors

D.A, Branada, Miranda, Sanchez, JHEP 12 (2020) 178

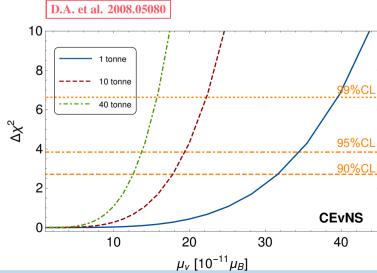
- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect


NMM in multi-ton DM detectors

- NMM limits
- Nuclear recoils
- Electron recoils

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector


Final remarks

Best sensitivities found for

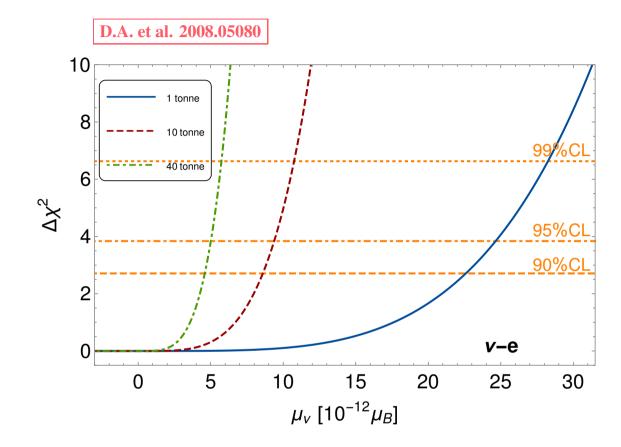
 $E_r = 0.3 \,\text{keV}$ and Bckg-2 hypothesis

Worse sensitivities found for $E_r = 1 \text{ keV}$ and Bckg-1 hypothesis

Diego Aristizabal, USM, July 29, 2021

Electron recoils

- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect


NMM in multi-ton DM detectors

- NMM limits
- Nuclear recoils
- Electron recoils

CPV at COHERENT

CEvNS with the *v*BDX-DRIFT detector

Final remarks

Sensitivities enter the region not constrained by astrophysical arguments... Region where some TeV-related new physics predicts $\mu_{\nu} \neq 0$

\bullet CE ν NS

- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

- LVM + CPV
- Dips CPV effects in ²³Na

CEvNS with the ν BDX-DRIFT detector

Final remarks

CPV at COHERENT

LVM + CPV

● CE_VNS

Neutrino sources and CEvNS "regimes"

CEvNS environments

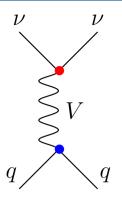
 LBNF neutrino beamline low-energy tail

Physics opportunities

Strategy

NMM in multi-ton DM detectors

CPV at COHERENT

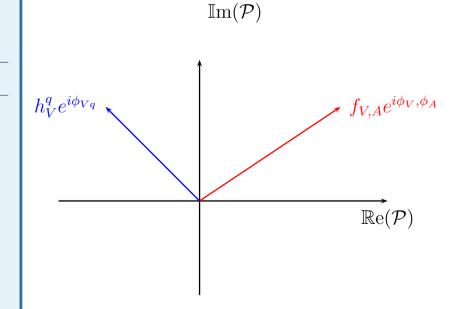

What to expect

●LVM + CPV

Dips CPV effects in ²³Na

CEvNS with the ν BDX-DRIFT detector

Final remarks



D.A, De Romeri, Rojas, JHEP 09 (2019) 069

$$\mathcal{L} = \bar{\nu}\gamma_{\mu}(f_V + if_A\gamma_5)\nu V^{\mu} + \sum_{q=u,d} \bar{q}\gamma_{\mu}h_V^q qV^{\mu}$$

Remarks

 \square Axial quark current neglected \Rightarrow Leads to (spin) suppressed effects

$$\frac{d\sigma}{dE_r} \sim \frac{G_F^2 m_N}{2\pi} \left| g_V^{\text{SM}} + \frac{h_V (f_V - if_A)}{2m_N E_r + m_V^2} \right|^2$$

The 9-parameter problem reduces to 3 parameters

$$\mathcal{P} = \{m_V, |H_V|, \phi\}$$

Dips CPV effects in ²³Na

● CE_VNS

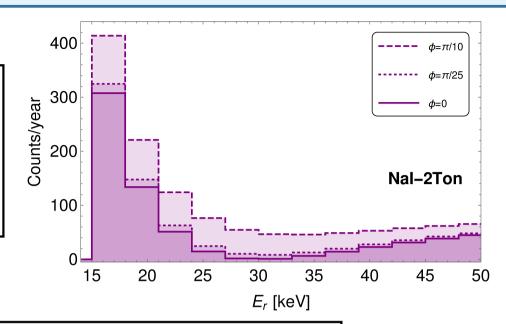
Neutrino sources and CEvNS "regimes"

- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

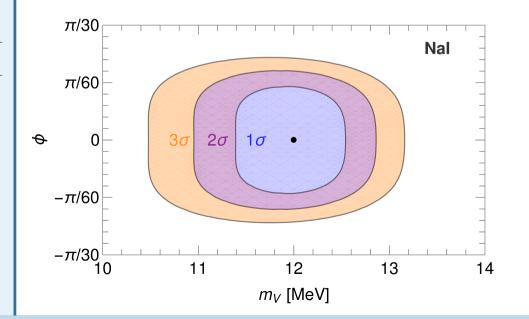
NMM in multi-ton DM detectors

CPV at COHERENT

- LVM + CPV
- Dips CPV effects in ²³Na


CEvNS with the ν BDX-DRIFT detector

Final remarks


Departures from a dip in $N_{\rm counts}$

"measure" the amount of CP violation

The structure of the dip gives info on CPV!

Run a pseudoexperiment with a dip and see what are the limits on ϕ

Observation of a dip in the spectrum

will not rule out CPV interactions

... But will set tight bounds

- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector

- vBDX-DRIFT: Sketch
- Signals in CS₂ and CF₄
- Neutron density distributions
- Neutrino NSI

Final remarks

CEvNS with the ν BDX-DRIFT detector

VBDX-DRIFT: Sketch

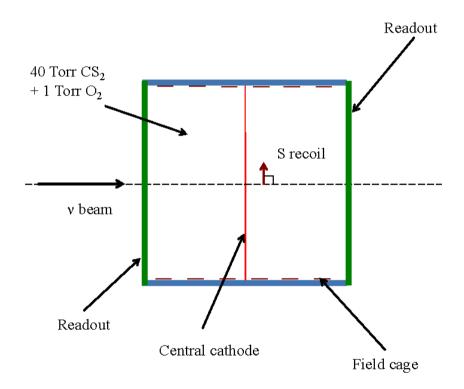
- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector

● vBDX-DRIFT: Sketch


- Signals in CS₂ and CF₄
- Neutron density distributions
- Neutrino NSI

Final remarks

D.A, Dutta, Kim, Snowden-Ifft, Strigari, arXiv:2103.10857

Directional low pressure TPC detector

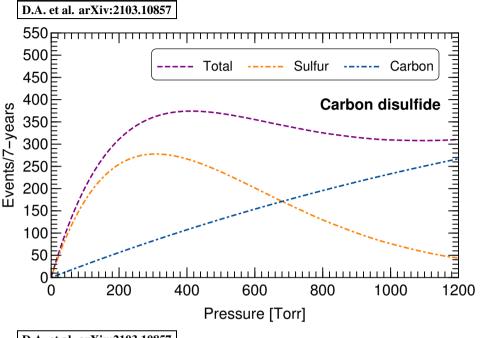
 \Box Operates with CS₂ (other gases possible CF₄, C₈H₂₀Pb...)

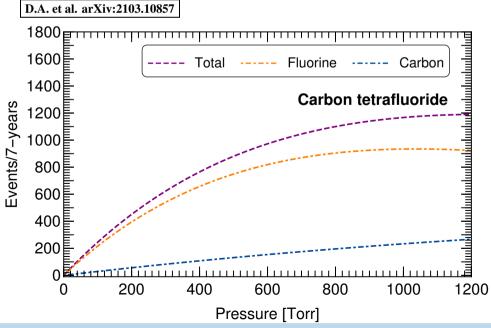
NRs mainly in sulfur induce ionization

□ CS₂ ions used to transport the ionization to the readout planes (MWPCs)

Signals in CS_2 and CF_4

- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect


NMM in multi-ton DM detectors


CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector

- vBDX-DRIFT: Sketch
- Signals in CS₂ and CF₄
- Neutron density distributions
- Neutrino NSI

Final remarks

Signal peaks at 400 Torr

Expected signal: 370 events

100% filled with CF₄

Expected signal: 880 events

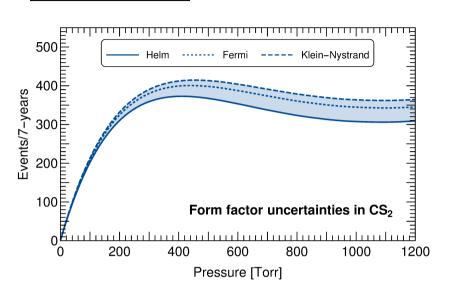
Neutron density distributions

● CE_VNS

Neutrino sources and CEvNS "regimes"

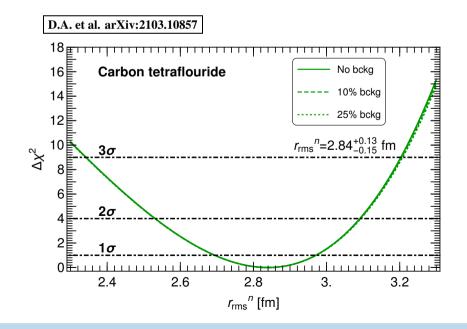
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors


CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector

- vBDX-DRIFT: Sketch
- Signals in CS₂ and CF₄
- Neutron density distributions
- Neutrino NSI


Final remarks

D.A. et al. arXiv:2103.10857

High-energy nature of the flux

- ⇒ Moderate dependence on the FF
- \Rightarrow Accounted for in signal uncertainty $\sim 10\%$

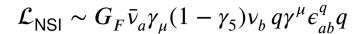
Approximation: $r_{\text{rms}}^n|_{C} = r_{\text{rms}}^n|_{F}$

C and F determined with a 3% accuracy

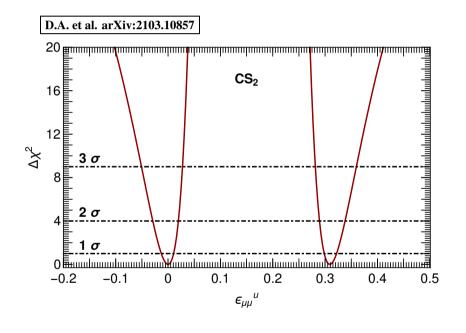
NuCo Workshop - p. 19

Neutrino NSI

- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect


NMM in multi-ton DM detectors

CPV at COHERENT


CEvNS with the ν BDX-DRIFT detector

- vBDX-DRIFT: Sketch
- Signals in CS₂ and CF₄
- Neutron density distributions
- Neutrino NSI

Final remarks

Initial state flavor, ν_{μ} : Only $\epsilon_{\mu b}$ parameters are testable

Region I: Deviations are small, $\epsilon^u_{\mu\mu} o 0$

Region II: NSI exceeds SM by ~ 2

⇒ Destructive interference

ν BDX-DRIFT CS ₂ (7-years)		COHERENT CsI (1-year)	
$\epsilon^u_{\mu\mu}$	$[-0.013, 0.011] \oplus [0.30, 0.32]$	$\epsilon^u_{\mu\mu}$	$[-0.06, 0.03] \oplus [0.37, 0.44]$
$\epsilon^u_{e\mu}$	[-0.064, 0.064]	$\epsilon^u_{e\mu}$	[-0.13, 0.13]

● CE_VNS

- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector

Final remarks

Conclusions

Final remarks

Conclusions

- CE_VNS
- Neutrino sources and CEvNS "regimes"
- CEvNS environments
- LBNF neutrino beamline low-energy tail
- Physics opportunities
- Strategy
- What to expect

NMM in multi-ton DM detectors

CPV at COHERENT

CEvNS with the ν BDX-DRIFT detector

Final remarks

Conclusions

© CEvNS offers a rich neutrino program, complementarity with CEvNS related agendas: *v*-cleus, CONUS, CONNIE, DM detectors, COHERENT (SNS), *v*BDX-DRIFT...

SM measurements include: Weak mixing angle at different low-energy scales neutron density distributions for Na, Ge, C, F, S, Pb

BSM searches include: Neutrino NSI, NGI and light vector and scalar mediators, NMM

∠ VBDX-DRIFT combined with a high-energy neutrino beam (e.g. LBNF)
is suitable for CEvNS measurements in
CS₂, CF₄, CջH₂₀Pb...

Directionality improves background rejection