CLIC Benchmark Reactions: Introduction

Mark Thomson,
University of Cambridge

This Talk:

- **★** Purpose of Benchmark Reactions relation to Physics Case
- **★** The ILC Benchmarks
- ★ Detector Issues at CLIC
- **★** Guidelines for benchmarks for the CLIC CDR
- **★** Timeline

Purpose of Benchmarks

Context:

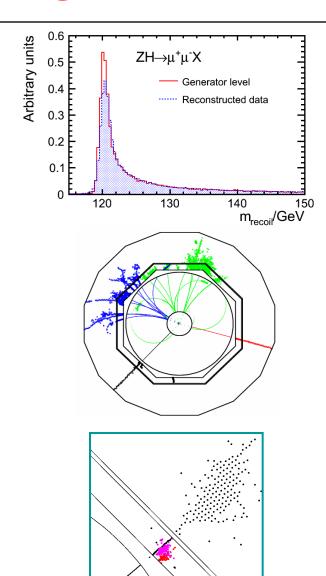
- **★ CLIC CDR Volume 3: Physics and Detector**
 - Chapter 2: the physics case
 - Chapter 3: detector requirements
 - Chapter 12: detector performance

Benchmarks

- **★** Physics Benchmarks
 - Select 5 channels for full analysis
 - GEANT 4 detector simulation, event reco + data analysis
 - This is a significant effort, hence restrict to about 5
 - Purpose: demonstrate ability "to do physics" in CLIC experimental environment
 - distinct from physics case
 - but, benchmark processes should be a sub-set of processes which form part of the physics case
 - **★** Useful to recall ILC Benchmark reactions...

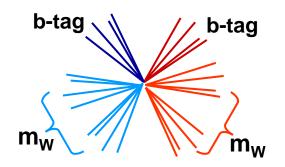
ILC Benchmarks

★ Higgs mass measurement from recoil mass:


$$e^+e^- \rightarrow HZ$$
 at $\sqrt{s} = 250\,\mathrm{GeV}$

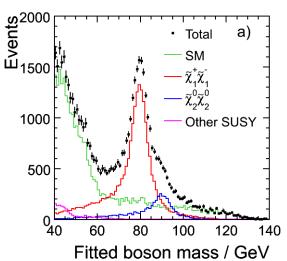
- Tests momentum resolution
- Assumed light Higgs $m_{\rm H} = 120\,{\rm GeV}$

★ Higgs Branching fractions from


$$e^+e^- \rightarrow HZ$$
 at $\sqrt{s} = 250 \, \mathrm{GeV}$

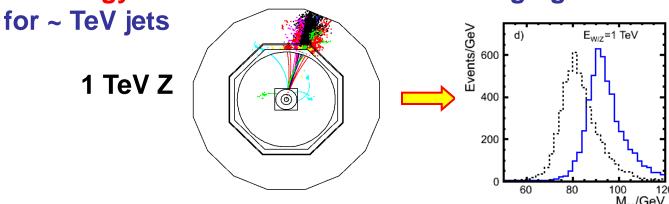
- In particular $BR(H \rightarrow c\overline{c})$
- Tests flavour tagging
- *** Tau polarization in** $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-$ at $\sqrt{s} = 500\,\mathrm{GeV}$
 - Reconstruction of nearby particles

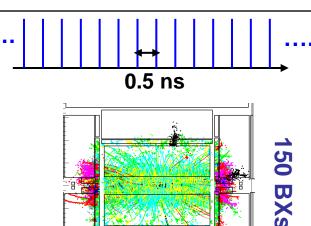
ILC Benchmarks cont.


- **Top mass and forward-backward asymmetry** in $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} = 500\,\mathrm{GeV}$
 - Tests reconstruction of multi-jet final states
 - Flavour tagging
 - Jet energy resolution

★ Chargino/Neutralino reconstruction assuming SUSY "point 5"

$$\begin{array}{lll} e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to W^+W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 & \text{vs.} & e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_2^0 \to ZZ \tilde{\chi}_1^0 \tilde{\chi}_1^0 \\ \text{at} & \sqrt{s} = 500 \, GeV \end{array}$$


- Tests jet energy resolution
- Gauge boson mass reconstruction


Detector Issues at CLIC

- **★ 0.5** ns time structure: detector will integrate over some number of bunch crossings
 - \implies Pile-up of $\gamma\gamma \rightarrow$ hadrons
 - Impact on jet finding ?
 - Impact on mass reconstruction
 - What timing requirements are needed?

- **★ High energy electron/muon reconstruction: challenging for ~TeV**
- **★ Forward jets:** challenging as background forward peaked
- **★ Missing E_T reconstruction: impact of background**

Benchmarks for CLIC CDR

Need to propose four 3 TeV CLIC benchmark channels

- **★** These should "stress" the detectors:
 - high energy leptons
 - reconstruction of high mass states decaying to jets
 - jet physics in the forward region
 - +...

Plus one 500 GeV CLIC benchmark channel

- **★** For a staged machine, compare directly with ILC performance
 - ILC Higgs studies performed at 250 GeV!
 - Choice probably limited to three ILC benchmarks at 500 GeV
 - tau pairs
 - chargino/neutralino reconstruction
 - top mass reconstruction

Complex analysis

Relatively simple

Timeline

- **★** Aim to have first full proposal at meeting of 19th July
 - needs to be decided quickly due to simulation/reconstruction time
- **★** Today, discuss options
- **★** This week (by email) converge on a shortlist