



# Synchrotron footprints in GRB prompt emission spectra

#### Maria Edvige Ravasio PhD Student University of Milano-Bicocca INAF – Astronomical Observatory of Brera – Merate

In collaboration with Giancarlo Ghirlanda, Gabriele Ghisellini, Lara Nava, Gor Oganesyan

### Gamma-Ray Burst: standard model



### **Typical observed GRB prompt spectrum**



#### 9<sup>th</sup> International Fermi Symposium - 12/04/2021

From Ghirlanda et al., 2009 (see also Preece 1998, Kaneko 2006, Nava 2011, Goldstein 2012, Gruber 2014)

### **Recent hints from the observations**

34 long GRBs observed simultaneously with XRT and BAT (Swift satellite)

- 62% of the prompt spectra display a break between 2 and 30 keV
- the spectral indices are  $<\alpha_1> = -0.51 \pm 0.29$ and  $<\alpha_2> = -1.54 \pm 0.26$

Consistent with synchrotron prediction!

Oganesyan et al., 2017,2018



### **Recent hints from the observations**

34 long GRBs observed simultaneously with XRT and BAT (Swift satellite)

- 62% of the prompt spectra display a break between 2 and 30 keV
- the spectral indices are  $<\alpha_1> = -0.51 \pm 0.29$ and  $<\alpha_2> = -1.54 \pm 0.26$

Consistent with synchrotron prediction!

Oganesyan et al., 2017,2018



### The case of GRB 160625B

Racusin et al GCN#19580 (LAT) Burns et al GCN#19581 (GBM)

One of the brightest burst ever detected 15000 Nal9 8-900 keV by Fermi/GBM (Fluence = 5.7 x 10<sup>-4</sup> erg/cm<sup>2</sup>) Ч count s 10000 z = 1.4065000 PRECURSOR MAIN EVENT LAST EVENT We performed a time-resolved analysis on the main event BGO1 0.3 - 40 MeV 2000 count s 8000 Nal9 8-900 keV 15000 4000 0 ົ່<mark>ທ</mark> 10000 LLE 30-100 MeV count 600 T count s 5000 400 200 0 0 195 180 185 190 200 205 210 215 1**0**0 200 300 400 5Ó0 600 700 Ó 800 Time since trigger [s] Time since trigger [s] Ravasio et al., 2018, A&A

### **Comparison of the fitting functions**



# GRB 160625B



#### Adding a break at low energy $\rightarrow$ the fit significantly improves! $\sigma$ (F-test) > 8 $\sigma$



## **GRB 160625B**



#### Adding a break at low energy $\rightarrow$ the fit significantly improves! $\sigma$ (F-test) > 8 $\sigma$



# **Selection of the candidates**

Ravasio, Ghirlanda, Nava & Ghisellini, 2019, A&A



### **Results of the time-resolved spectral analysis**



Single break function  $\rightarrow <\alpha> = -1.02$  (0.19)

### **Results of the time-resolved spectral analysis**



9<sup>th</sup> International Fermi Symposium - 12/04/2021

Ravasio et al., 2019, A&A

### **The spectral evolution of GRB 180720B**





#### 9th International Fermi Symposium - 12/04/2021

 $10^{15}$ 

 $\rightarrow$  see also synchrotron model fit by Burgess et al. 2020

### **Results of the time-resolved spectral analysis**



- It seems to exist only one component below the peak energy
- Consistent within  $1\sigma$  with the synchrotron value  $\alpha = -2/3$



#### **GRB Standard Model:**



**GRB Standard Model:** 



**B ~ 10 Gauss** 

#### **GRB Standard Model:**





Ghisellini et al., A&A, 2020

A possible solution: the prompt emission may be produced by synchrotron from **protons** rather than electrons

e

### **Switching roles**

These new results could be explained by synchrotron emission from **protons** rather than electrons

Ghisellini et al., A&A, 2020



### **Switching roles**

Electrons  $\longrightarrow t_{cool.e}^{obs} \sim 10^{-7}s$ 

These new results could be explained by synchrotron emission from **protons** rather than electrons

Too short!!

Ghisellini et al., A&A, 2020

STAY TUNED!

For typical parameters of the emitting region  $(B' \sim 10^6 G)$ :

Protons 
$$\longrightarrow t_{cool,p}^{obs} \sim t_{cool,e}^{obs} \left(\frac{m_p}{m_e}\right)^{5/2} \sim 1.44 \times 10^8 t_{cool,e}^{obs}$$

<u>Much longer!!</u> ~1 s → They become efficient emitters

9th International Fermi Symposium - 12/04/2021

It can explain:

• 
$$\nu_{cool} \sim 100 \, keV$$

• a standard  $B' \sim 10^6 G$ 

- still keeping the emitting region at R ~10<sup>13</sup> cm
- accounting for a short variability timescale

...still under investigation (see also Florou et al. 2021)

# Summary

- Strong observational evidences (Oganesyan et al. 2017,2018, Ravasio et al., 2018, 2019) in both Swift and Fermi data in favour of the synchrotron origin of GRBs spectra
  - Well supported by the optical data and by the direct fit of the synchrotron model (Oganesyan et al., 2019, Ronchi et al., 2020, Burgess et al. 2020)

# Summary

- Strong observational evidences (Oganesyan et al. 2017,2018, Ravasio et al., 2018, 2019) in both Swift and Fermi data in favour of the synchrotron origin of GRBs spectra
  - Well supported by the optical data and by the direct fit of the synchrotron model (Oganesyan et al., 2019, Ronchi et al., 2020, Burgess et al. 2020)



B ~ 10 Gauss B ~ 10<sup>6</sup> Gauss

# Summary

- Strong observational evidences (Oganesyan et al. 2017,2018, Ravasio et al., 2018, 2019) in both Swift and Fermi data in favour of the synchrotron origin of GRBs spectra
  - Well supported by the optical data and by the direct fit of the synchrotron model (Oganesyan et al., 2019, Ronchi et al., 2020, Burgess et al. 2020)



• Next step: Think! It's time for more theoretical efforts

#### 9th International Fermi Symposium - 12/04/2021

# **Thanks for your attention**

### **GRB 190114C: from prompt to afterglow**

Mirzoyan et al. GCN #23701: MAGIC detects the GRB 190114C in the TeV energy domain

#### We analyze the spectral evolution detected by Fermi/GBM between 10 keV and 40 MeV



9th International Fermi Symposium - 12/04/2021