Probing orbital parameters of gamma-ray binaries with TeV light curves

IURII SUSHCH – NWU (SOUTH AFRICA)/DESY ZEUTHEN (GERMANY)

BRIAN VAN SOELEN – UFS (SOUTH AFRICA)
TeV light curves

- Variability related to the orbital period
- Often double-peak structure

Prokoph et al., ICRC 2019
Maier et al., ICRC 2019
What causes the dip?

- Naively one would expect highest flux at periastron due to the highest energy density of stellar photons
- But that’s where we see the dip!

PSR B1259-63/LS 2883
Gamma-gamma absorption

LS 5039: Both location and depth of the minimum can be roughly explained by absorption.

PSR B1259-63: Location of the minimum can be explained by absorption but not the depth.
\[\tau_{\gamma\gamma} = \int_0^l dl \int_0^{4\pi} (1 - \mu) d\Omega \int_{\mu}^{\infty} \frac{2}{\epsilon_{\gamma}(1-\mu)} n_{ph}(\epsilon, \Omega) \sigma_{\gamma\gamma}(\epsilon, \epsilon_{\gamma}, \mu) d\epsilon; \quad \mu = \cos \theta \]

\(e \) – eccentricity
\(i \) – inclination angle
\(\omega \) – longitude of periastron
\(\varphi \) – orbital phase

depends on the distance to the star

\((e, i, \omega, \varphi)\)
Geometry

- Inclination i – the angle between the normal to the orbital plane and direction towards the observer
- Longitude of periastron ω – the angle between the ascending node and periastron
- Orbital phase φ – measured from apastron in the direction of movement
Test case: PSR B1259-63

Orbit:
- $P_{\text{orb}} = 3.4$ years
- Eccentricity = 0.87
- Inclination = 22.2 deg
- Longitude of periastron = 138.7 deg

Pulsar:
- $P = 48$ ms
- $L_{SD} = 8 \times 10^{35}$ erg/s
- $t_c = 3.3 \times 10^5$ years

Star:
- Be star
- $L_{\text{star}} = 2.3 \times 10^{38}$ erg/s
- $T = 27500 – 30000$ K
- $M = 31$ M_{\odot}
- $R = 8.1 – 9.7$ R_{\odot}
- $D = 2.3$ kpc

Orbital parameters are well determined from observations!

Credits: NASA’s Goddard Space Flight Center/Francis Reddy
Dependence of opacity on parameters

Simplified analytic solution
(look for it in proceedings/forthcoming paper)

Exact numeric solution
Method

- Main assumption: the minimum in the TeV light curve is defined by the highest gamma-gamma absorption.

- For a fixed eccentricity we vary inclination (0°, 90°) and longitude of periastron (0°, 360°) and for each combination of (i, ω) we calculate the orbital phase at which absorption for a 1 TeV photon would be the highest.

- Gamma-gamma absorption is calculated taking into account only stellar photons (without circumstellar disk) and assuming that gamma-ray emission is produced at the pulsar position.
Test:
PSR B1259-63

- orbital parameters are well determined from observations
Test:
PSR B1259-63

- orbital parameters are well determined from observations

Orbital phase: 154 deg
Time: 2 days before periastron
PSR J2032+4127/ MT91 213

- New member of the class
- Detected in 2017
- Coincident with TeV J2032+413
- Orbital period of 45-50 years
- X-ray dip is not coincident with the gamma-ray dip
- TeV light curve has its minimum about 10-20 days after periastron

VERITAS & MAGIC, 2018
Orbital solutions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right ascension, α (J2000.0)</td>
<td>$20^h32^m13^s119(2)$</td>
<td>$20^h32^m13^s119(2)$</td>
<td>$20^h32^m13^s119(2)$</td>
</tr>
<tr>
<td>Declination, δ (J2000.0)</td>
<td>$41^\circ 27'24''38(2)$</td>
<td>$41^\circ 27'24''35(2)$</td>
<td>$41^\circ 27'24''34(2)$</td>
</tr>
<tr>
<td>Epoch of frequency, t_0 (MJD)</td>
<td>55700.0</td>
<td>55700.0</td>
<td>55700.0</td>
</tr>
<tr>
<td>Frequency, v_0 (Hz)</td>
<td>6.980 979(5)</td>
<td>6.980 975(6)</td>
<td>6.980 973(7)</td>
</tr>
<tr>
<td>Frequency time derivative, \dot{v}_0 (10^{-12}s$^{-2}$)</td>
<td>$-0.5396(5)$</td>
<td>$-0.5538(4)$</td>
<td>$-0.5617(5)$</td>
</tr>
<tr>
<td>Orbital period, P_b (d)</td>
<td>16 000</td>
<td>17 000</td>
<td>17 670</td>
</tr>
<tr>
<td>Epoch of periastron, T_0 (MJD)</td>
<td>58053(1)</td>
<td>58069(1)</td>
<td>58068(2)</td>
</tr>
<tr>
<td>Projected semimajor axis, a (light-second)</td>
<td>7138(48)</td>
<td>9022(216)</td>
<td>16335(3737)</td>
</tr>
<tr>
<td>Eccentricity, e</td>
<td>0.936(1)</td>
<td>0.961(2)</td>
<td>0.989(5)</td>
</tr>
<tr>
<td>Longitude of periastron, ω (deg)</td>
<td>52(1)</td>
<td>40(1)</td>
<td>21(5)</td>
</tr>
<tr>
<td>Mass function, f_m (M_\odot)</td>
<td>1.5</td>
<td>2.7</td>
<td>15.0</td>
</tr>
<tr>
<td>Glitch epoch, T_g (MJD)</td>
<td>55 810.77</td>
<td>55 810.77</td>
<td>55 810.77</td>
</tr>
<tr>
<td>Frequency, Δv_g (10^{-6} Hz)</td>
<td>1.9064(1)</td>
<td>1.9073(1)</td>
<td>1.9076(1)</td>
</tr>
<tr>
<td>Frequency time derivative, \dot{v}_g (10^{-15}s$^{-2}$)</td>
<td>$-0.5018(1)$</td>
<td>$-0.545(7)$</td>
<td>$-0.564(6)$</td>
</tr>
<tr>
<td>DM (pc cm$^{-3}$)</td>
<td>114.68(3)</td>
<td>114.67(2)</td>
<td>114.66(2)</td>
</tr>
<tr>
<td>DM time derivative, DM_1 (pc cm$^{-3}$yr$^{-1}$)</td>
<td>$-0.02(1)$</td>
<td>$-0.01(1)$</td>
<td>$-0.01(1)$</td>
</tr>
<tr>
<td>rms timing residual, σ_t (ms)</td>
<td>0.53</td>
<td>0.44</td>
<td>0.42</td>
</tr>
</tbody>
</table>
PSR J2032+4127: TeV light curve

- Minimum occurs 10-20 days after periastron
- Corresponds to the orbital phase of 216-242 deg for P = 17000 days

VERITAS & MAGIC, 2018
PSR J2032+4127:

e = 0.961 (0.936-0.989)
PSR J2032+4127:

allowed solutions

- Green and red dashed areas correspond to constraints set by optical observations (Ho et al. 2017)
- Strong indication that gamma-gamma absorption is indeed responsible for the dip in the TeV light curve
- TeV light curve (location + depth of the dip) can be successfully used to constrain orbital parameters
- In case of known orbital parameters, connection of the dip to the gamma-gamma absorption can constrain the location of the emitting region
Backup slides
Analytic VS Numeric

Analytic VS Numeric

Analytic VS Numeric

Location of max absorption (for different eccentricity)
Location of max absorption (for different orbital period)