

Search for features in the cosmic-ray electron and positron energy spectra

Francesco Loparco (Bari University & INFN Bari) Alessandro Cuoco (Torino University & INFN Torino) Mario Nicola Mazziotta (INFN Bari)

on behalf of the Fermi LAT Collaboration

- The Fermi LAT is also a detector of cosmic-ray electrons and positrons (CREs)
 - We analyzed the CRE data sample collected by the LAT between August 4, 2008 and June 24, 2015 with E>42 GeV

Outline

- 15M CRE events, 4.68 years live time
- More details in PRD 95, 082007 (2017)
- Search for features in the CRE energy spectra
 - Analysis of Galactic CREs
 - Search for features from DM annihilations
 - Search for possible line features
 - not discussed here, see PRD 98, 022006 (2018)
 - Analysis of CREs from the Sun
 - Search for box-like and line-like features from DM annihilations
 - Box-like features from DM annihilations into light long-lived mediators decaying into CREs outside the Sun
 - Line-like features from DM annihilating into CREs outside the Sun

CREs from dark matter annihilations in the Milky Way pace Telescope

- DM particles in the Milky Way halo can directly annihilate into electron-٠ positron pairs in the process:
 - $-\chi\chi \rightarrow e^+e^-$

Gamma-ray

- The CRE energy spectra at Earth from DM annihilations depend on: ٠
 - Dark matter mass m_{γ} and velocity-averaged DM annihilation cross section $\langle \sigma v \rangle$
 - Production yields evaluated following the prescriptions of Cirelli et al. [JCAP 1103, 051 (2011)]
 - DM density profile in the Galaxy
 - NFW profile with $\rho_{\odot} = 0.4 \ GeV/cm^3$
 - - Calculation performed using the 3D version of DRAGON2
 - Diffusion parameters chosen to reproduce the B/C ratio measured by AMS-02 (details in PRD 98, 022006)
 - Propagation of CREs in the Solar system
 - Solar modulation described with the force-field approximation
 - Modulation potential $\varphi = 0.55 GV$
- CRE spectra at Earth expected to exhibit an edge-like feature at $E = m_{\chi}$

CRE spectra at Earth from DM annihilations in the Galaxy

- CRE spectra evaluated with $\langle \sigma v \rangle = 3 \times 10^{-25} cm^3 s^{-1}$
- DM spectra are compared with the overall CRE spectra measured by different experiments

- Fit in sliding energy windows from 42 GeV to 2 TeV
 - The width of each window is $w = 0.5E_w$
- Spectral model: $I(E) = I_0(E) + I_f(E)$
 - Smooth component: $I_0(E) = k \left(\frac{E}{E_0}\right)^{-\gamma} (E_0 = 1 \text{ GeV})$
 - Parameters to be fitted: k, γ
 - Possible feature: $I_f(E) = sI_{DM}(m_{\chi}, \langle \sigma v \rangle_0, ...)$
 - Parameter to be fitted: *s* (intensity of the feature)
 - $s = \langle \sigma v \rangle / \langle \sigma v \rangle_0$
 - $\langle \sigma v \rangle_0 = 3 \times 10^{-26} cm^3 s^{-1}$ is the reference cross section
- Fit procedure:

- We minimize a χ^2 function: $\chi^2 = \sum_{j=1}^N \frac{(n_j \mu_j)^2}{n_j + f_{syst}^2 n_j^2}$
 - n_j and μ_j are the observed and predicted counts in the j-th bin
 - *f*_{syst} takes systematic uncertainties into account
 - f_{syst} evaluated from the data
- Sensitivity and global significance of the fits evaluated with the pseudoexperiment technique
 - Simple power-law template in the whole energy range

Search for DM signatures in the spectrum of galactic CREs

Upper limits on the velocity-averaged DM annihilation cross section

- Limits on the strength of the feature are converted into limits on $\langle \sigma v \rangle$
 - Limits scale as ho_{\odot}^2
 - Dependence on the interstellar radiation field and on the galactic magnetic field
- Constraints in agreement with previous results

ermi

- DM particles from the galactic halo can be gravitationally trapped by the Sun through scattering interactions with the nuclei in the solar environment
- Two possible scenarios for CRE productions:
 - DM particles captured in external orbits annihilate outside the Sun into e^+e^- pairs which can reach the Earth
 - DM particles lose energy through inelastic scatterings with solar nuclei
 - Annihilations at rest: $\chi \chi \rightarrow e^+ e^-$
 - Line-like feature in the CRE energy spectrum at $E = m_{\chi}$
 - DM particles sink in the solar core, annihilate into pairs of long-lived mediators ϕ escaping from the Sun and decaying into e^+e^- pairs which can reach the Earth
 - DM particles slowed through elastic scatterings with solar nuclei
 - Annihilations at rest: $\chi \chi \rightarrow \phi \phi$
 - Mediators exit from the Sun and decay: $\phi
 ightarrow e^+e^-$
 - Box-like feature in the energy spectrum with upper edge at $E = m_{\chi}$
- In both cases a feature is expected on the top of a smooth spectrum
- Similar scenarios for gamma rays (see D. Serini's talk)

Mediator scenario: DM capture rate

Evaluated with DARKSUSY 6.1.0 assuming default settings

- local DM density $\rho_{\odot} = 0.3 \ GeV/cm^3$ —
- Maxwellian velocity distribution with $v_{\odot} = 220 \ km/s$ and $v_{rms} = 270 \ km/s$ DM-nucleon cross section $\sigma = 10^{-40} \ cm^2$ _
- _

- Combined analysis of the data from two regions:
 - Signal region centered on the Sun
 - Control region centered on the Anti-Sun
 - Analysis performed with Rols of different radii, from 2° to 45°
- Analysis performed in sliding energy windows
 - The width of each window is $w = 0.35E_w$
- Spectral models:

- $I_{\mathcal{S}}(E) = I_0(E) + I_f(E)$
- $I_B(E) = I_0(E)$
- Smooth component: $I_0(E) = k \left(\frac{E}{E_0}\right)^{-\gamma}$
- Feature: $I_f(E) = s\delta(E_w E)$ or $I_f(E) = s\Theta(E_w E)$
- Fit procedure:
 - We minimize a χ^2 function: $\chi^2 = \sum_{j=1}^N \left[\frac{\left(n_j^S \mu_j^S\right)^2}{n_j^S + \left(f_{syst}n_j^S\right)^2} + \frac{\left(n_j^A \mu_j^A\right)^2}{n_j^A + \left(f_{syst}n_j^A\right)^2} \right]$
 - n_j^S , n_j^A and μ_j^S , μ_j^A are the observed and predicted counts in the j-th energy bin
 - *f_{syst}* takes systematic uncertainties into account
- Sensitivity and global significance of the fits evaluated with the pseudo-experiment technique
 - Simple power-law template in the whole energy range

CRE count spectra

- Full markers = signal region
- Open markers = control region

Limits on the feature intensities: a few examples

- No evidence of features
- All locally significant possible features turn out to be globally insignificant

Limits on the DM-nucleon inelastic scattering cross section

- Limits on the intensity of the line-like features are converted into limits on the inelastic scattering cross section for the process $\chi + N \rightarrow \chi^* + N$
- Limits depend on the mass splitting $\Delta = m_{\chi^*} m_{\chi}$

- Limits on the intensity of the box-like features are converted into limits on the elastic scattering cross section for the process $\chi + N \rightarrow \chi + N$
- Constraints are consistent with the results from other experiments and other channels

- We have studied the energy spectra of CREs measured by the Fermi LAT
 - Analysis of galactic CREs
 - Analysis of CREs from the Sun
- All analyses yield no evidence of possible DM signals
- Constraints consistent and competitive with results from other experiments and from gamma-ray analyses
- For further details:
 - M. N. Mazziotta et al., "Search for features in the cosmic-ray electron and positron spectrum measured by the Fermi Large Area Telescope", Phys. Rev. D98 (2018), 022006
 - A. Cuoco et al., "Search for dark matter cosmic-ray electrons and positrons from the Sun with the Fermi Large Area Telescope", Phys. Rev. D101 (2020), 022002