Modeling Blazar SEDs and Spectral Variability with Time-Dependent Diffusive Shock Acceleration: Application to 1ES 1959+650 Observed with AstroSAT

Markus Böttcher
North-West University
Potchefstroom, South Africa

Matthew Baring (Rice University, Houston, TX, USA)
Sunil Chandra (NWU, Potchefstroom, South Africa + SAAO)

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation of South Africa.
Relativistic Shocks in Jets

- Internal Shocks: likely sites of relativistic particle acceleration.
- Most likely mildly relativistic, $\beta \gamma \sim 1$
- In most works: Simple power-law or log-parabola electron spectra (from Fermi I / II acceleration) assumed with spectral index (~ 2) put in “by hand”.

Jet of M87 at different wavelengths
Monte-Carlo Simulations of Diffusive Shock Acceleration (DSA)

- Gyration in B-fields and diffusive transport (pitch-angle diffusion) modeled by a Monte Carlo technique.

- Shock crossings produce net energy gains \rightarrow first-order Fermi.

- Pitch-angle diffusion parameterized through a mean-free-path (λ_{pas}) parameter $\eta (p)$:

$$\lambda_{\text{pas}} = \eta(p) r_g \sim p^\alpha \quad (\alpha \geq 1)$$

(Summerlin & Baring 2012)
Shock Acceleration Spectra

Non-thermal particle spectral index and thermal-to-non-thermal normalization are strongly dependent on η_0, α, and B-field obliquity!

Particle spectra as hard as $n(\gamma) \sim \gamma^{-1}$ possible!

Baring et al. (2017)
Constraints from Blazar SEDs

Synchrotron peak $\leftrightarrow \gamma_{\text{max}}$

Balance $t_{\text{acc}} \sim \eta(\gamma) \omega_{\text{gyr}}(\gamma)^{-1}$
with radiative cooling time scale

If synchrotron cooling dominates:

$$\gamma_{\text{max}} \sim B^{-1/2} [\eta(\gamma_{\text{max}})]^{-1/2}$$

$$\Rightarrow h\nu_{\text{sy}} \sim 100 \delta [\eta(\gamma_{\text{max}})]^{-1} \text{ MeV} \quad \text{(independent of B-field!)}$$
Constraints from Blazar SEDs

\[h\nu_{\text{sy}} \sim 100 \delta [\eta(\gamma_{\text{max}})]^{-1} \text{ MeV} \quad (\text{independent of B-field!}) \]

\[\Rightarrow \text{Need large } \eta(\gamma_{\text{max}}) \text{ to obtain synchrotron peak in optical/UV/X-rays} \]

\[\Rightarrow \text{But: Need moderate } \eta(\gamma \sim 1) \text{ for efficient injection of particles into the non-thermal accelerations scheme} \]

\[\Rightarrow \text{Need strongly energy dependent pitch-angle scattering m.f.p., with } \alpha > 1 \text{ (Baring et al. 2017)} \]
Implications for Shock-Induced Turbulence

Gyro-resonance condition: \(\lambda_{\text{res}} \propto p \)

\(\Rightarrow \) Higher-energy particles interact with longer-wavelength turbulence

\[k_{\text{stir}} \sim \frac{2\pi}{R} \]

Stirring Scale \(\sim R \)

Inertial Range

Dissipation Scale

Turbulence level decreasing with increasing distance from the shock

\(\Rightarrow \) High-energy (large \(r_g \)) particles “see” reduced turbulence

\(\Rightarrow \) Large \(\lambda_{\text{pas}} \)
Electron Evolution Time Scales

Mrk 501

- SSC
- Synchrotron
- Total rad. cooling
- $t_{\text{dyn}} = R/c$
- $t_{\text{esc}} = \eta_{\text{esc}} \times t_{\text{dyn}}$
- t_{acc}

v_F [Jy Hz]

ν [Hz]
Time-Dependent Electron Evolution with Radiative Energy Losses

Acceleration time scale:

\[t_{\text{acc}} = \eta \ t_{\text{gyr}} = \eta \ \frac{2\pi \gamma m_e c}{eB} \ll t_{\text{cool}}, t_{\text{dyn}} \]

For almost all electrons

⇒ Use shock-accelerated electron spectrum as instantaneous injection \(Q_e(\gamma) \);
⇒ Solve Fokker-Planck Equation for electrons:

\[
\frac{\partial n_e(\gamma,t)}{\partial t} = - \frac{\partial}{\partial \gamma} (\gamma \ n_e) + Q_e(\gamma,t) - \frac{n_e(\gamma,t)}{t_{\text{esc,e}}}
\]
Numerical Scheme

- Injection spectra from turbulence characteristics + MC simulations of DSA
- Injection from small acceleration zone (shock) into larger radiation zone
- Time-dependent leptonic code based on Böttcher & Chiang (2002)
- Radiative processes:
 - Synchrotron
 - Synchrotron self-Compton (SSC)
 - External Compton (EC: dust torus + BLR + direct accretion disk)

Shock injection “on” for
\[0 < \Delta t' < L'/v'_s \]

\[Q_{e,s}(\gamma,t') = Q_{e,s}(\gamma) H(t'; 0, \Delta t') \]
Example: HBL 1ES 1959+650

- Prototypical HSP BL Lac object at $z = 0.048$
- Observed with AstroSAT during flaring states in 2 long (144 ksec) observations in 2016 and 2017

(Chandra et al. 2021)
Example: HBL 1ES 1959+650

- Pronounced spectral variability (harder when brighter)
- Log-parabolic spectral fits: \(F_E \sim E^{-(\alpha + \beta \log[E/E_0])} \)

(Chandra et al. 2021)
1ES 1959+650 in 2016

Complex variability patterns require passage of multiple shocks.

\[\lambda_{\text{pas}} = 60 \ r_g \ \gamma^{0.9} \]

\[\eta_1 = 60 \]

\[\alpha = 1.9 \]

\[B = 0.15 \ \text{G} \]

\[\delta = 20 \]

\[R = 6 \times 10^{15} \ \text{cm} \]

\[\rightarrow \Delta t' \sim 2 \times 10^5 \ \text{s} \]

\[\rightarrow \Delta t_{\text{obs}} \sim 2.8 \ \text{h} \]

Flaring caused by
- increasing \(L_{\text{inj}} \)
- decreasing \(\eta_0 \)
2016: MWL Light Curves

<table>
<thead>
<tr>
<th>Parameter [units]</th>
<th>(L_{\text{inj}}) [erg/s]</th>
<th>(\eta_0)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescence</td>
<td>(2.5 \times 10^{40})</td>
<td>60</td>
<td>1.9</td>
</tr>
<tr>
<td>Shock 1</td>
<td>(3.0 \times 10^{40})</td>
<td>50</td>
<td>1.9</td>
</tr>
<tr>
<td>Shock 2</td>
<td>(3.5 \times 10^{40})</td>
<td>50</td>
<td>1.9</td>
</tr>
<tr>
<td>Shock 3</td>
<td>(4.1 \times 10^{40})</td>
<td>40</td>
<td>1.9</td>
</tr>
<tr>
<td>Shock 4</td>
<td>(3.4 \times 10^{40})</td>
<td>50</td>
<td>1.9</td>
</tr>
</tbody>
</table>

(Chandra et al. 2021)
2016: Discrete Correlation Functions

Strong correlations between X-rays and VHE \(\gamma \)-rays

Soft X-ray lags of \(~ 1 \) hour behind hard X-rays and VHE \(\gamma \)-rays.

(Chandra et al. 2021)
2016: Hardness-Intensity Diagrams

1ES 1959+650
2016 - Hardness-Intensity Diagrams

Harder-when-brighter trend without significant spectral hysteresis is well reproduced.

(Chandra et al. 2021)
1ES 1959+650 in 2017

Higher flux state well reproduced by changing Doppler factor (smaller viewing angle $\theta_{\text{obs}}: 2.87^\circ \rightarrow 2.34^\circ$)

$\lambda_{\text{pas}} = 40 \ r_g \ \gamma^{0.8}$

$\eta_1 = 40$
$\alpha = 1.8$
$B = 0.08 \text{ G}$
$\delta = 24$
$R = 10^{16} \text{ cm}$
$\Rightarrow \Delta t' \sim 3 \times 10^5 \text{ s}$
$\Rightarrow \Delta t_{\text{obs}} \sim 3.9 \text{ h}$

Flaring caused by
- increasing L_{inj}
- decreasing η_0
- decreasing α

(Chandra et al. 2021)
2017: MWL Light Curves

<table>
<thead>
<tr>
<th>Parameter [units]</th>
<th>L_{inj} [erg/s]</th>
<th>η_0</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescence</td>
<td>2.8×10^{40}</td>
<td>40</td>
<td>1.8</td>
</tr>
<tr>
<td>Shock 1</td>
<td>3.5×10^{40}</td>
<td>30</td>
<td>1.7</td>
</tr>
<tr>
<td>Shock 2</td>
<td>3.0×10^{40}</td>
<td>30</td>
<td>1.8</td>
</tr>
<tr>
<td>Shock 3</td>
<td>3.6×10^{40}</td>
<td>25</td>
<td>1.8</td>
</tr>
<tr>
<td>Shock 4</td>
<td>4.3×10^{40}</td>
<td>25</td>
<td>1.8</td>
</tr>
<tr>
<td>Shock 5</td>
<td>5.1×10^{40}</td>
<td>15</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Summary

2. Time-dependent simulations of shock-in-jet model with realistic particle injection from diffusive shock acceleration, applied to long AstroSAT + MWL observations of 1ES 1959+650 in 2016 and 2017:

3. Flares with harder-when-brighter trend (no significant spectral hysteresis) well reproduced by decreasing pitch-angle-scattering mean-free path → increased turbulence levels induced by shock passage.

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation of South Africa.
Thank you!

Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.