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Relativistic Shocks in Jets

Gb Ga

• Internal Shocks: likely sites 

of relativistic particle 

acceleration. 

• Most likely mildly relativistic, 

bg ~ 1

• In most works: Simple 

power-law or log-parabola 

electron spectra (from Fermi 

I / II acceleration) assumed 

with spectral index (~ 2) put 

in “by hand”.
Jet of M87 at different wavelengths



Monte-Carlo Simulations of Diffusive 

Shock Acceleration (DSA)

• Gyration in B-fields and 
diffusive transport (pitch-
angle diffusion) modeled by 
a Monte Carlo technique.

• Shock crossings produce 
net energy gains → first-
order Fermi.

(Summerlin & Baring 2012) 

• Pitch-angle diffusion parameterized through a mean-free-
path (lpas) parameter h (p):

lpas = h(p)*rg ~ pa                   (a ≥ 1)



Shock Acceleration Spectra

Non-thermal particle spectral index and thermal-to-

non-thermal normalization are strongly dependent on 

h0, a, and B-field obliquity!

Baring et al. (2017)

Particle spectra as 

hard as n(g) ~ g-1

possible! 



Constraints from Blazar SEDs

Synchrotron peak ↔ gmax

Balance tacc ~ h(g) wgyr(g)-1

with radiative cooling time scale

If synchrotron cooling dominates:

gmax ~ B-1/2 [h(gmax)]
-1/2

 hnsy ~ 100 d [h(gmax)]
-1 MeV    (independent of B-field!) 



Constraints from Blazar SEDs

hnsy ~ 100 d [h(gmax)]
-1 MeV    (independent of B-field!) 

 Need large h(gmax) to obtain synchrotron peak in 

optical/UV/X-rays

 But: Need moderate h(g ~ 1) for efficient injection of 

particles into the non-thermal accelerations scheme

 Need strongly energy dependent pitch-angle 

scattering m.f.p., with a > 1 (Baring et al. 2017)



Implications for Shock-Induced Turbulence
Gyro-resonance condition:    lres ∝ p 

=> Higher-energy particles interact with longer-wavelength turbulence

k = 2p/l
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Stirring Scale ~ R

kstir ~ 2p/R

Dissipation Scale

Turbulence level decreasing with increasing distance from the shock

 High-energy (large rg) particles “see” reduced turbulence 

 Large lpas



Electron Evolution Time Scales



Time-Dependent Electron Evolution 

with Radiative Energy Losses

Acceleration time scale: 

For almost all electrons 

 Use shock-accelerated electron spectrum as instantaneous 

injection Qe(g);

 Solve Fokker-Planck Equation for electrons:

= - (g ne) + Qe (g,t) -
______ __∂ne (g,t)
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Numerical Scheme
• Injection spectra from turbulence characteristics + MC simulations of DSA

• Injection from small acceleration zone (shock) into larger radiation zone

• Time-dependent leptonic code based on Böttcher & Chiang (2002)

• Radiative processes: 

– Synchrotron

– Synchrotron self-Compton (SSC)

– External Compton (EC: dust torus + BLR + direct accretion disk)

G

bs

Shock injection “on” for 

0 < Dt’ < L’/v’s

L’

Qe,s(g,t’) = Qe,s(g) H(t’; 0, Dt’)



Example: HBL 1ES 1959+650

• Prototypical HSP BL Lac object at z =  0.048

• Observed with AstroSAT during flaring states in 2 long 

(144 ksec) observations in 2016  and 2017

(Chandra et al. 2021)

20172016



Example: HBL 1ES 1959+650

• Pronounced spectral variability (harder when brighter)

• Log-parabolic spectral fits: FE ~ E-(a + blog[E/E0])

(Chandra et al. 2021)



lpas = 60 rg g0.9

1ES 1959+650 in 2016

(Chandra et al. 2021)

h1 = 60

a = 1.9

B = 0.15 G

d = 20

R = 6*1015 cm

-> Dt’ ~ 2*105 s

-> Dtobs ~ 2.8 h

Complex variability patterns require passage of multiple shocks. 

Flaring caused by 

• increasing Linj

• decreasing h0



2016: MWL Light Curves

(Chandra et al. 2021)
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2016: Discrete Correlation Functions

Strong 

correlations 

between X-rays 

and VHE g-rays

Soft X-ray lags of 

~ 1 hour behind 

hard X-rays and 

VHE g-rays. 

(Chandra et al. 2021)



2016: Hardness-

Intensity Diagrams

Harder-when-

brighter trend 

without significant 

spectral hysteresis 

is well reproduced. 

(Chandra et al. 2021)



lpas = 40 rg g0.8

1ES 1959+650 in 2017

(Chandra et al. 2021)

h1 = 40

a = 1.8

B = 0.08 G

d = 24

R = 1016 cm

-> Dt’ ~ 3*105 s

-> Dtobs ~ 3.9 h

Higher flux state well reproduced by changing Doppler factor 

(smaller viewing angle qobs: 2.87o → 2.34o)

Flaring caused by 

• increasing Linj

• decreasing h0

• decreasing a



2017: MWL Light Curves

(Chandra et al. 2021)
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Summary

1. Coupled MC Simulations of Diffusive Shock Acceleration and 
radiation transport reveal strongly energy-dependent mean-free-
path to pitch-angle scattering.

2. Time-dependent simulations of shock-in-jet model with realistic 
particle injection from diffusive shock acceleration, applied to 
long AstroSAT + MWL observations of 1ES 1959+650 in 2016 
and 2017:

3. Flares with harder-when-brighter trend (no significant spectral 
hysteresis) well reproduced by decreasing pitch-angle-scattering 
mean-free path → increased turbulence levels induced by shock 
passage. 
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