Modeling Blazar SEDs and Spectral Variability with Time-Dependent Diffusive Shock Acceleration:

Application to 1ES 1959+650 Observed with AstroSAT

Markus Böttcher
North-West University
Potchefstroom, South Africa

Matthew Baring (Rice University, Houston, TX, USA)
Sunil Chandra (NWU, Potchefstroom, South Africa + SAAO)

Based on Böttcher & Baring (2019): ApJ, 887, 133 (arXiv:1911.02834) + Chandra et al. (2021): ApJ, submitted

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation of South Africa.

Relativistic Shocks in Jets

- Internal Shocks: likely sites of relativistic particle acceleration.
- Most likely mildly relativistic,
 βγ ~ 1
- In most works: Simple power-law or log-parabola electron spectra (from Fermi I / II acceleration) assumed with spectral index (~ 2) put in "by hand".

Jet of M87 at different wavelengths

Monte-Carlo Simulations of Diffusive Shock Acceleration (DSA)

- Gyration in B-fields and diffusive transport (pitchangle diffusion) modeled by a Monte Carlo technique.
- Shock crossings produce net energy gains → firstorder Fermi.

(Summerlin & Baring 2012)

• Pitch-angle diffusion parameterized through a mean-free-path (λ_{pas}) parameter η (p):

$$\lambda_{\text{pas}} = \eta(p)^* r_{\text{g}} \sim p^{\alpha}$$
 $(\alpha \ge 1)$

Shock Acceleration Spectra

Non-thermal particle spectral index and thermal-tonon-thermal normalization are strongly dependent on η_0 , α , and B-field obliquity!

Constraints from Blazar SEDs

Synchrotron peak $\leftrightarrow \gamma_{\text{max}}$

Balance $t_{acc} \sim \eta(\gamma) \omega_{gyr}(\gamma)^{-1}$ with radiative cooling time scale

If synchrotron cooling dominates:

$$\gamma_{\text{max}} \sim B^{-1/2} [\eta(\gamma_{\text{max}})]^{-1/2}$$

 $\Rightarrow hv_{sv} \sim 100 \ \delta \ [\eta(\gamma_{max})]^{-1} \ MeV \ (independent of B-field!)$

Constraints from Blazar SEDs

 $hv_{sy} \sim 100 \delta [\eta(\gamma_{max})]^{-1} \text{ MeV}$ (independent of B-field!)

- \Rightarrow Need large $\eta(\gamma_{max})$ to obtain synchrotron peak in optical/UV/X-rays
- \Rightarrow But: Need moderate $\eta(\gamma \sim 1)$ for efficient injection of particles into the non-thermal accelerations scheme
- \Rightarrow Need strongly energy dependent pitch-angle scattering m.f.p., with $\alpha > 1$ (Baring et al. 2017)

Implications for Shock-Induced Turbulence

Gyro-resonance condition: $\lambda_{res} \propto p$

=> Higher-energy particles interact with longer-wavelength turbulence

Turbulence level decreasing with increasing distance from the shock \Rightarrow High-energy (large r_{α}) particles "see" reduced turbulence

 \Rightarrow Large λ_{pas}

Electron Evolution Time Scales

Mrk 501

Time-Dependent Electron Evolution with Radiative Energy Losses

Acceleration time scale:

$$t_{acc} = \eta \ t_{gyr} = \eta \ \frac{2\pi \gamma \ m_e \ c}{eB} \ll t_{cool}, t_{dyn}$$

For almost all electrons

- \Rightarrow Use shock-accelerated electron spectrum as instantaneous injection $Q_e(\gamma)$;
 - ⇒ Solve Fokker-Planck Equation for electrons:

$$\frac{\partial n_{e}(\gamma,t)}{\partial t} = -\frac{\partial}{\partial \gamma} (\bar{\gamma} n_{e}) + Q_{e}(\gamma,t) - \frac{n_{e}(\gamma,t)}{t_{esc,e}}$$

Numerical Scheme

- Injection spectra from turbulence characteristics + MC simulations of DSA
- Injection from small acceleration zone (shock) into larger radiation zone
- Time-dependent leptonic code based on Böttcher & Chiang (2002)
- Radiative processes:
 - Synchrotron
 - Synchrotron self-Compton (SSC)

 $Q_{e,s}(\gamma,t') = Q_{e,s}(\gamma) H(t'; 0, \Delta t')$

External Compton (EC: dust torus + BLR + direct accretion disk)

Example: HBL 1ES 1959+650

- Prototypical HSP BL Lac object at z = 0.048
- Observed with AstroSAT during flaring states in 2 long (144 ksec) observations in 2016 and 2017

Example: HBL 1ES 1959+650

- Pronounced spectral variability (harder when brighter)
- Log-parabolic spectral fits: $F_E \sim E^{-(\alpha + \beta \log[E/E0])}$

1ES 1959+650 in 2016

Complex variability patterns require passage of multiple shocks.

$$\lambda_{\text{pas}} = 60 \text{ r}_{\text{g}} \gamma^{0.9}$$

$$\eta_1 = 60$$
 $\alpha = 1.9$
 $B = 0.15 G$
 $\delta = 20$
 $R = 6*10^{15} \text{ cm}$
 $-> \Delta t' \sim 2*10^5 \text{ s}$
 $-> \Delta t_{\text{obs}} \sim 2.8 \text{ h}$

Flaring caused by

- increasing L_{inj}
- decreasing η₀

2016: MWL Light Curves

Parameter [units]	$L_{\rm inj}$ [erg/s]	η_0	α
Quiescence	2.5×10^{40}	60	1.9
Shock 1	3.0×10^{40}	50	1.9
Shock 2	3.5×10^{40}	50	1.9
Shock 3	4.1×10^{40}	40	1.9
Shock 4	3.4×10^{40}	50	1.9

2016: Discrete Correlation Functions

Strong correlations between X-rays and VHE γ-rays

Soft X-ray lags of ~ 1 hour behind hard X-rays and VHE γ-rays.

2016: Hardness-Intensity Diagrams

Harder-whenbrighter trend without significant spectral hysteresis is well reproduced.

1ES 1959+650 in 2017

Higher flux state well reproduced by changing Doppler factor (smaller viewing angle θ_{obs} : 2.87° \rightarrow 2.34°)

$$\lambda_{\text{pas}} = 40 \text{ r}_{\text{g}} \gamma^{0.8}$$

$$\eta_1 = 40$$
 $\alpha = 1.8$
 $B = 0.08 G$
 $\delta = 24$
 $R = 10^{16} \text{ cm}$
 $-> \Delta t' \sim 3*10^5 \text{ s}$
 $-> \Delta t_{\text{obs}} \sim 3.9 \text{ h}$

Flaring caused by

- increasing L_{inj}
- decreasing η₀
- decreasing α

2017: MWL Light Curves

<u>Summary</u>

- 1. Coupled MC Simulations of Diffusive Shock Acceleration and radiation transport reveal strongly energy-dependent mean-free-path to pitch-angle scattering.
- 2. Time-dependent simulations of shock-in-jet model with realistic particle injection from diffusive shock acceleration, applied to long AstroSAT + MWL observations of 1ES 1959+650 in 2016 and 2017:
- 3. Flares with harder-when-brighter trend (no significant spectral hysteresis) well reproduced by decreasing pitch-angle-scattering mean-free path → increased turbulence levels induced by shock passage.

Thank you!

Based on Böttcher & Baring (2019): ApJ, 887, 133 (arXiv:1911.02834) + Chandra et al. (2021): ApJ, submitted

Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.