

The Fermi GBM Data Tools and GSpec

Adam Goldstein

USRA (AGoldstein@usra.edu)

William Cleveland (USRA)

Daniel Kocevski (NASA/MSFC)

Joshua Wood (MSFC NPP)

What is it?

A Python API for GBM Data

Released April 2020 (>600 downloads thru 2020)

- Interface to GBM data (both trigger and continuous)
- Sufficiently **high-level** part of the API so that it is easily accessible to many, but also **lower-level** part of the API for expert users
- Reduce and Analyze data (binning, background estimation)
- Export/conversion of data
- Observing conditions Source visibility, GTIs, detector angles, etc
- Spectral analysis
- Simulations
- Wide range of visualizations
- Interface to HEASARC FTP archive and Browse Catalogs

High-Level API — Lightcurves

import the CTIME and CSPEC data classes from gbm.data import Ctime, Cspec

read a ctime file

ctime = Ctime.open(test_data_dir+'/glg_ctime_nb_bn120415958_v00.pha')

integrate over 50-300 keV

lightcurve = ctime.to_lightcurve(energy_range=(50.0, 300.0))

from gbm.plot.lightcurve import Lightcurve
lcplot = Lightcurve(data=lightcurve)
plt.show()

Rebin it!

the data binning module
from gbm.binning.binned import rebin_by_time

rebin the data to 2048 ms resolution
rebinned_ctime = ctime.rebin_time(rebin_by_time, 2.048)

and replot lcplot = Lightcurve(data=rebinned_ctime.to_lightcurve())

Detector Responses

Read a Response file

rsp = RSP.open(test_data_dir+'/glg_cspec_n4_bn120415958_v00.rsp2')

Plot the DRM

from gbm.plot import ResponseMatrix

rsp_plot = ResponseMatrix()

rsp_plot.set_response(rsp, color='plasma') # a pretty color gradient

 $rsp_plot.xlim = (5.0, 1000.0)$

 $rsp_plot.ylim = (5.0, 1000.0)$

Fold a photon model through the response

a power-law function.

params is a list of parameters: (amplitude, index)

def powerlaw(params, energies):

return params[0]*(energies/100.0)**params[1]

fold a power law with amplitude 0.1 and index -2.0 through the DRM at trigger time rsp.fold_spectrum(powerlaw, (0.1, -2.0), atime=0.0)

array([2.04555274, 2.41331594, 2.0801156, 1.56281085, 1.57124845, 1.95612002, 2.18619054, 2.68707728, 3.09026986, 3.87129313, 4.53683755, 5.03903868, 5.73969901, 6.52557411, 8.28145565, 8.7270274, 9.29967452, 9.82871379, 10.27252461, 10.64788631, 12.61452885, 13.15436336, 14.44362474, 11.80630877, 9.50993977.

Observing Conditions

Read a position history file

from gbm.data.poshist import PosHist

open a poshist file
poshist = PosHist.open(test_data_dir+'/glg_poshist_all_170101_v00.fit')

Is a position visible at some time?

t0 = 504975500.0 # the position of our source ra = 324.3 dec = -20.8 poshist.location_visible(ra, dec, t0)

array([True])

Angle of the position to detector n0:

poshist.detector_angle(ra, dec, 'n0', t0)

4.2721980564266975

Plot the detector pointing

from gbm.plot.skyplot import SkyPlot, FermiSkyPlot

initialize plot
skyplot = SkyPlot()
plot the orientation of the detectors and Earth blockage at our time of interest
skyplot.add_poshist(poshist, trigtime=t0)
plt.show()

Plot the orbital position

from gbm.plot.earthplot import EarthPlot

initialize plot earthplot = EarthPlot()

let's how the orbital path for +/-1000 s around our t0
earthplot.add_poshist(poshist, trigtime=t0, time_range=(t0-1000.0, t0+1000.0))

Localizations

Read a HEALPix localization file

from gbm.data.localization import GbmHealPix

open a GBM localization

loc = GbmHealPix.open(test_data_dir+'/glg_healpix_all_bn190915240_v00.fit')

The confidence level at a point

loc.confidence(40.0, 4.0)

0.865783539232832

Area of the 90% conf. region

loc.area(0.9) # 90% confidence in units of sq. degrees

281.1633711457409

Plot the localization

from gbm.plot.skyplot import SkyPlot

initialize skyplot = SkyPlot()

add our HEALPix object skyplot.add_healpix(loc)

Spectral Fitting

Can fit multiple components, plot the fit, and the spectrum for each component

modelplot = ModelFit(fitter=specfitter, view='nufnumodelplot.ylim = (0.01, 10000.0)

MLE with PG-Stat

we initialize with our PHAs, backgrounds, and responses:
specfitter = SpectralFitterPgstat(phas, bkgds.to_list(), rsps.to_list(), method='TNC')
a power law, cut-off power law, and a Band function

from gbm.spectra.functions import PowerLaw, Comptonized, Band

Simulations

Simulate a spectrum (20 sims shown)

from gbm.simulate import PhaSimulator
pha_sims = PhaSimulator(rsp, Band(), band_params, exposure, spec_bkgd, 'Gaussian')

Simulate TTE/spectra

a Norris pulse shape and a quadratic background from gbm.simulate.profiles import norris, quadratic

norris_params = (0.05, 0.0, 0.1, 0.5) quadratic_params = (1.0, 0.05, 0.003)

source simulation

tte_sim = TteSourceSimulator(rsp, Band(), band_params, norris, norris_params)
tte_src = tte_sim.to_tte(-5.0, 10.0)

background simulation

tte_sim = TteBackgroundSimulator(spec_bkgd, 'Gaussian', quadratic, quadratic_params)
tte_bkgd = tte_sim.to_tte(-10.0, 10.0)

merge the background and source

tte_total = TTE.merge([tte_bkgd, tte_src])

bin to 64 ms resolution so we can make a lightcurve plot

phaii = tte_total.to_phaii(bin_by_time, 0.064)

lcplot = Lightcurve(data=phaii.to_lightcurve(energy_range=(8.0, 900.0)))

- *1

From RMfit to GSpec

From RMfit to GSpec

- GSpec is an RMfit replacement for spectral analysis
 - RMfit is outdated, can be difficult to install, and the underlying language is not open source
- Ability to export data for use in XSPEC, as well as performing spectral analysis within GSpec
- Centralized lookup file convention: All files used in an analysis are included in a single, human-readable (JSON) lookup file
- Will be able to read RMfit lookup files so you can load old analysis into GSpec

So when can luse it?

- \$0 *****2
- The GBM Data Tools? Now! https://fermi.gsfc.nasa.gov/ssc/data/analysis/gbm/
 - In a tar on the FSSC, but will eventually be available on the NASA GitHub.
- GSpec? Soon!
 - There is a beta version available, but will soon have a full release using the Data Tools
- Extensive API documentation, several notebook tutorials
- Coming attractions: Interface to and improved GBM Response Generator and the GBM localization algorithm
- The tools are being extended to other similar instruments, such as BurstCube, and concept studies for LEAP, StarBurst, and MoonBEAM
- NASA grant to expand to legacy missions such as BATSE, HETE-2, Suzaku, etc.
- Interested in feedback, bug reports, and suggestions on generalization

Backup

High-Level API — Spectra

import the TTE data class from gbm.data import TTE

tte = TTE.open(test_data_dir+'/glg_tte_n9_bn090131090_v00.fit')

Convert to spectrum and plot

integrate over time from 0-10 s spectrum = tte.to_spectrum(time_range=(0.0, 10.0))

specplot = Spectrum(data=spectrum)
plt.show()

Rebin

from gbm.binning.binned import combine_by_factor

rebin the count spectrum by a factor of 4
rebinned_energy = tte.rebin_energy(combine_by_factor, 4)

rebinned_spectrum = rebinned_energy.to_spectrum(time_range=(0.0, 10.0))
specplot = Spectrum(data=rebinned_spectrum)

20 <u>~</u> *

Custom HEALPix Maps

Annulus on the sky (e.g. IPN)

annulus_map = HealPix.from_annulus(300.0, -30, 80.0, 3.0, nside=128)

skyplot = SkyPlot()

skyplot.add_healpix(annulus_map, earth=False, sun=False, detectors=[])

List of vertices

ra_pts = [270.0, 180.0, 90.0] dec_pts = [15.0, 60.0, 15.0]

verts_map = HealPix.from_vertices(ra_pts, dec_pts, nside=128)

Map convolutions

a single Gaussian of sigma_deg radius

def gauss_model(sigma_deg):
 sigma = deg2rad(sigma_deg)

return ([sigma],[1.0])

convolved with a 5-deg radius Gaussian
verts_convolved = verts_map.convolve(gauss_model, 5.0)

