

Der Wissenschaftsfonds.

Anita Reimer (University of Innsbruck)

9th Fermi Symposium April 14, 2021

Outline

- **I** Open questions in particle multi-messenger astrophysics
- **II** On the particle multi-messenger connection
- **III Exploring the environments of neutrino production**
- **IV Concluding remarks & future perspectives**

Cosmic Rays as Messengers of the High-Energy Universe

- Where do the cosmic rays originate?
- What are their sources?
- How do these cosmic particle accelerators work? (Mechanisms, environments, ...)

Gamma Rays as Messengers of the High-Energy Universe

Neutrinos as Messengers of the High-Energy Universe

- Where do the astrophysical neutrinos originate?
- What are their sources?
- How do these cosmic particle accelerators work? (Mechanisms, environments, ...)

Multi-messenger allsky spectrum

-> Comparable power density in gamma rays, neutrinos & UHECRs ~ 10^{43...44}erg Mpc⁻³yrs⁻¹

Same source origin of gamma rays, neutrinos, UHECRs then?

Linking cosmic rays - gamma rays - neutrinos

Neutrino & gamma-ray production needs targets!

Do UHECR-, γ - & v-sources look observationally alike?

Example of a possible UHECR-source candidate population

Population requirements on HE v-sources

Requirements on HE v-source environments

• **Photomeson production:**

Required nucleon energy: $E'_{p} \leq 0.2 (E_{v,0.1PeV} / D_{10} f_{0.05}) PeV$

• Hadro-nuclear interaction:

Multi-messengers: The complete picture

Energy of escaping photons

Multi-messengers: The complete picture

Gamma-ray opaque sources as "hidden" v-sources

TXS 0506+056 as archetypal v-blazar?

Hybrid SED modeling of TXS 0506+056 in v-flare state

Constraining the v-production region

- Cascade constraints -

[see also Paliya etal '21 for similar conclusions on EHBL BZB J0955+3551]

Neutrino-production in various blazar types

Often require:

- Large jet power (L_{iet} >> L_{edd})
- Neutrino production in particle dominated environment (u_p » u_B)
- Narrow and/or unsual hard proton injection spectra

Neutrino production in AGN cores

to MeV-background?

Concluding remarks & multi-messenger future perspectives

- Multi-messenger observations provide crucial information to constrain physical properties of cosmic accelerators
- If jets of AGN are sites of numerous TeV-to-PeV vs, our understanding of these sources is very limited.
- Efficiently photo-produced vs originate from regions with high γ-ray opacity
 - -> photo-produced vs may not be traced by bright GeV-TeV emitters
- Exploring photon MeV (& below) energy range, with polarization capabilities, supports probing the environments of v-production

Improving sensitivity, spatial & energy resolution, & sky coverage of neutrino detectors needed to help finding the dominant v-source population

- Back-up Slides -

On the magnetization of the v-production environment

Emission Models for AGN Jets

[adapted from: Mannheim 1993]

• "Leptonic" models:

Jet material: rel e⁺e⁻ + cold e,p HE emission e⁺e⁻-initiated

"Hadronic" models:

Jet material: rel e⁺e⁻p + cold e,p HE emission dominantly p-initiated

"Lepto-hadronic" models:
 Jet material: rel e⁺e⁻p + cold e,p
 HE emission dominantly e⁺e⁻-initiated

Modeling γ -bright Blazars: Hybrid SEDs

• Target photon fields =

jet synchrotron photons; e.g., PIC [Mannheim etal 1991, 1993, ...], SPB [Mücke etal 2001, 2003, ...],)

Multifrequency Modelling of LAT-detected Blazars

One-zone leptonic models: •acceptable fits to ~9/12 of all cases •need external target photons in all cases

One-zone hadronic models:

•acceptable fits to ~8/12 of all cases

proton syn. @GeVs + cascade
emission @ higher energies

• require very large jet powers ~10⁴⁷⁻⁴⁹erg/s

```
•E<sub>p,max</sub> ~ 10<sup>17...18</sup>eV
```