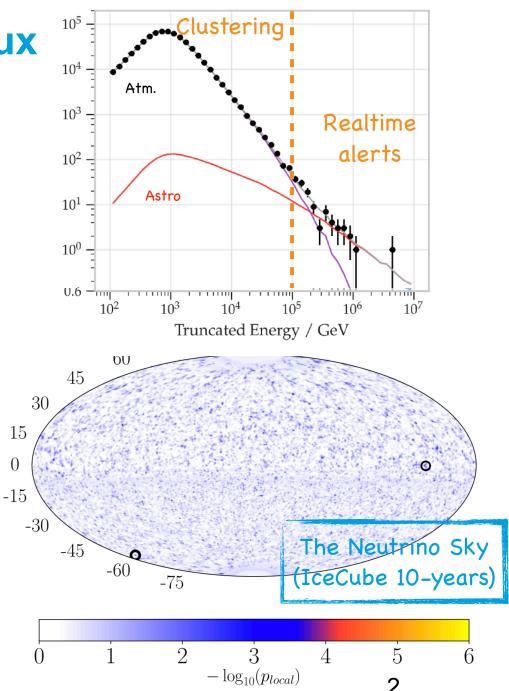
Patterns in the multi-wavelength behavior of neutrino emitting blazar candidates

Simone Garrappa (DESY Zeuthen),

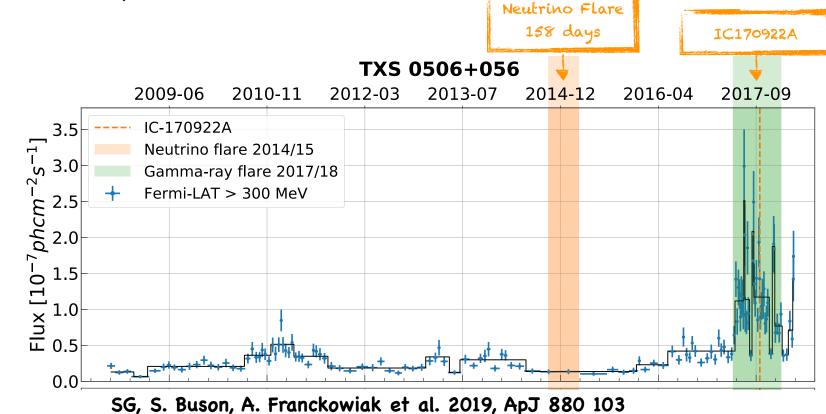
A. Franckowiak, V. Paliya and S. Buson on behalf of the *Fermi*-LAT Collaboration B. Shappee, R. Stein, M. Kowalski, X. Rodrigues, S. Gao, W. Winter

9th International Fermi Symposium Johannesburg (South Africa) April 12-17 2021



The sources of the IceCube diffuse flux

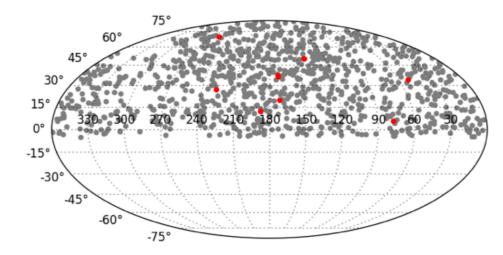
Motivation behind this work


- An astrophysical neutrino flux was detected by • IceCube in 2013
- Two different strategies in the point-sources search: ٠
 - Single detection of high-energy events (Realtime alerts since 2016)
 - Clustering of low-energy events with high atmospheric background
- Several MWL efforts to identify the counterparts of ٠ these events:
 - The gamma-ray blazar TXS 0506+056 is so far the most significant candidate counterpart to IceCube neutrino events

0

The puzzling case of TXS 0506+056

- We have two different behaviors in gamma-rays for TXS 0506+056 in coincidence with a single high-energy neutrino and with a `neutrino flare'. Is it always the case?
- Are gamma-rays the best tracer to identify neutrino sources?



Neutrino Flares

DESY.

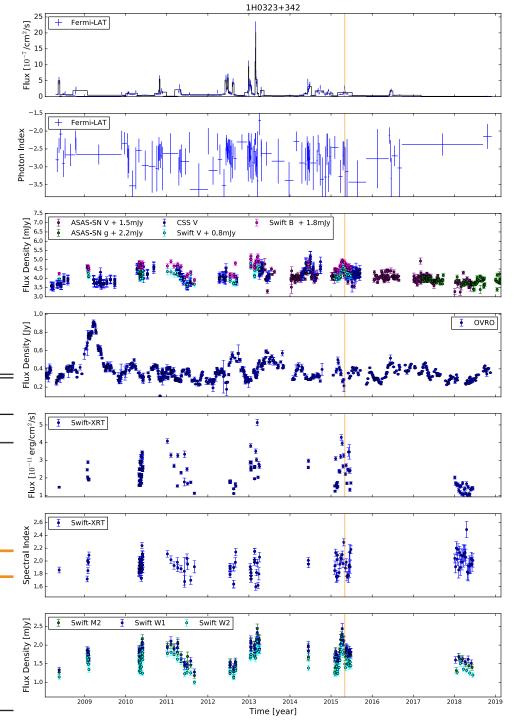
Spatial and temporal clusterings of neutrino events

- We used the sample of 10 blazars with the most significant ٠ 'neutrino flares' found in (O'Sullivan and Finley, 2019)
- Neutrino flare durations span from ~seconds to ~100 days ٠
- No remarkable gamma-ray/MWL simultaneous activity ٠

(O'Sullivan and Finley 2019, arXiv:1908.05526v1)

					A. Franckowiak, SG et al. 2020, Apj 893, 2, 16					
Source Name	4FGL Name	Class	redshift	<i>T</i> ⁰ [MJD]	T_w [days]	p_{γ}	$T_{\gamma,\nu}[\text{MJD}]$	L_{γ} [erg]		
Neutrino flare candidates										
4C +20.25	J1125.9+2005	FSRQ	0.133	56464.1	5.2	0.64	[56369.45, 57248.31]	1.6×10^{44}		
CRATES J112916+370317	J1129.1+3703	BL Lac	0.445	56501.385	$6.0 imes 10^{-2}$	0.45	[56404.68, 57066.59]	2.9×10^{46}		
MG2 J112758+3620	J1127.8+3618	FSRQ	0.884	56501.385	6.0×10^{-2}	0.24	[56482.90, 56555.93]	$5.5 imes 10^{46}$		
TXS 0506+056	J0509.4+0542	BL Lac	0.336	57000	120	0.92	[56965.28, 57089.28]	2.2×10^{46}		
1H 0323+342	J0324.8+3412	nlsy1	0.061	57326.2938	1.7×10^{-3}	0.08	[57326.10, 57333.17]	2.0×10^{44}		
RBS 1467	J1508.8+2708	BL Lac	0.27	57440	170	0.53	[56474.88, 58633.01]	6.3×10^{44}		
S4 1716+68	J1716.1+6836	FSRQ	0.777	57469.17919	5.4×10^{-5}	0.48	[57378.18, 57510.76]	$2.1 imes 10^{46}$		
M 87	J1230.8+1223	radio galaxy	0.00428	57730.0307	2.7×10^{-3}	0.55	[57724.77, 57847.51]	$6.9 imes 10^{41}$		
GB6 J0929+5013	J0929.3+5014	BL Lac	0.37	57758.0	1.2	0.44	[57647.78, 57759.66]	5.6×10^{45}		
1ES 0927+500	J0930.5+4951	BL Lac	0.187	57758.0	1.2	0.49	[57031.36, 58633.01]	2.2×10^{44}		

Franckowick SG at al 2020 Ant 803 162

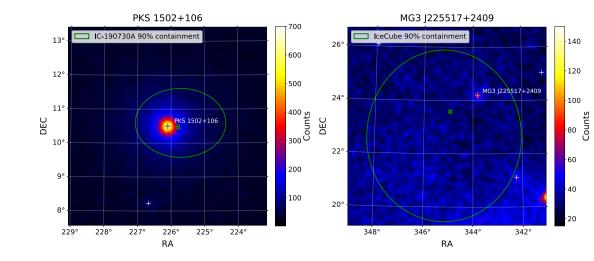

Neutrino Flares

DESY.

Spatial and temporal clusterings of neutrino events

- The NLSy1 galaxy 1H 0323+342 (z = 0.061) shows mild flaring activity coincident with the neutrino flare
- Probability to find the source in a higher gamma-ray state is $p_{\gamma} = 8\%$

Source Name **4FGL Name** Class redshift T_0 [MJD] Neutrino flare candidates 4C + 20.25J1125.9+2005 FSRO 56464.1 0.133 CRATES J112916+370317 56501.385 J1129.1+3703 BL Lac 0.445MG2 J112758+3620 J1127.8+3618 FSRQ 0.88456501.385 TXS 0506+056 J0509.4+0542 BL Lac 0.336 57000 1H 0323+342 J0324.8+3412 57326.2938 0.061 nlsy1 **RBS** 1467 J1508.8+2708 BL Lac 0.27 57440 0.777 S4 1716+68 J1716.1+6836 FSRO 57469.17919 0.00428 M 87 J1230.8+1223 radio galaxy 57730.0307 GB6 J0929+5013 J0929.3+5014 BL Lac 0.37 57758.0 1ES 0927+500 J0930.5+4951 BL Lac 0.187 57758.0

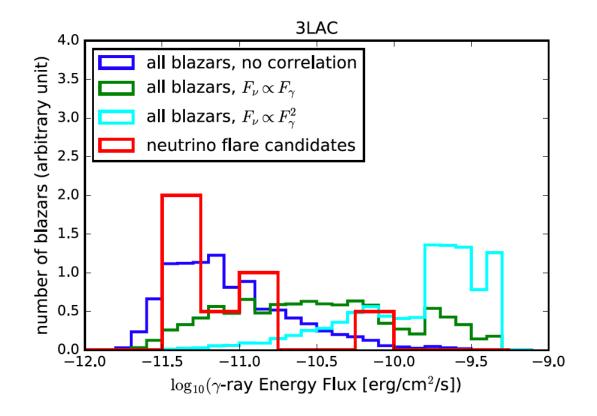


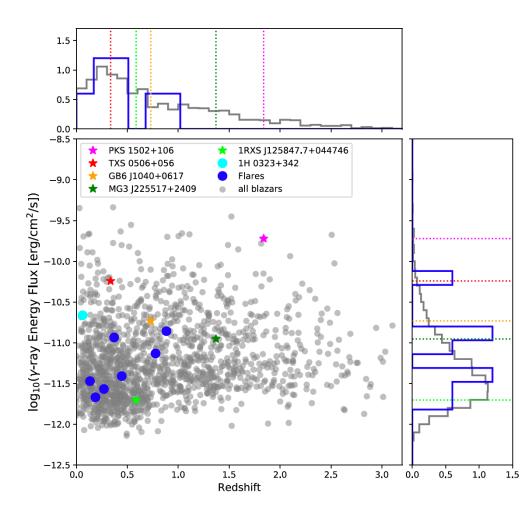
A. Franckowiak, SG et al. 2020, ApJ 893, 2, 162

Single HE neutrinos coincidences

Counterparts to realtime neutrino alerts

- Selection criterium: 90% error less than 5 deg²
 - 44 out of 75 events survive after selection
- 6 coincident sources (including TXS 0506+056 and GB6 J1040+0617)
- MG3 J225517+2409 (Antares Coll. 2019) added to the list, but would not pass the selection (A_{90%} > 5 deg²)

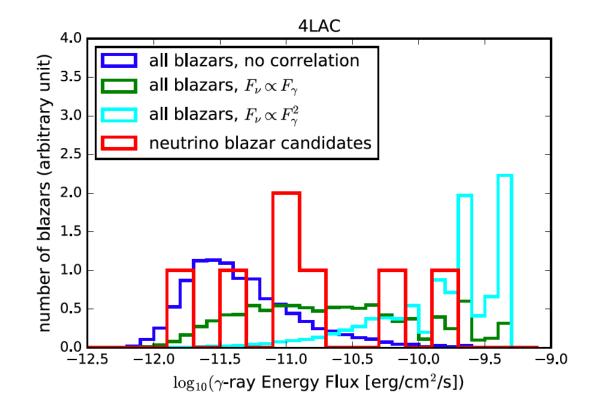

A. Franckowiak, SG et al. 2020, ApJ 893, 2, 162

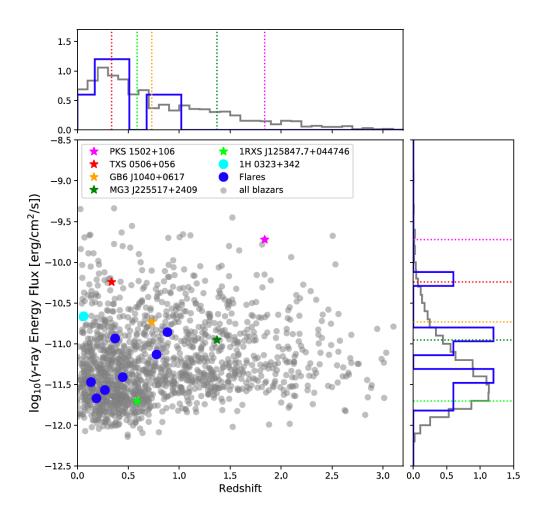

Source Name	4FGL Name	Class	Redshift	T_0 (MJD)	T_w (days)	p_{γ}	$T_{\gamma,\nu}$ (MJD)	$L_{\gamma} (\mathrm{erg} \ \mathrm{s}^{-1})$					
Single High-energy Neutrinos													
MG3 J225517+2409	J2255.2+2411	BL Lac	1.37	55,355.49		0.04	[55,346.73, 55,403.54]	1.3×10^{47}					
GB6 J1040+0617	J1040.5+0617	BL Lac	0.73	57,000.14311		0.17	[56,997.67, 57,055.08]	$4.6 imes 10^{46}$					
1RXS J125847.7-044746	J1258.7-0452	BL Lac	0.586	57,291.90119				2.9×10^{45}					
GB6 J0244+1320	J0244.7+1316	BCU		57,695.38									
TXS 0506+056	J0509.4+0542	BL Lac	0.336	58,018.87		0.009	[58,016.57, 58,019.94]	$2.2 imes 10^{46}$					
AT20G J175841-161703	J1758.7-1621	BCU		58,535.35		0.39	[58,304.43, 58,633.01]						
PKS 1502+106	J1504.4+1029	FSRQ	1.839	58,694.8685		0.75	[58,603.54, 58,695.14]	4.7×10^{48}					

Candidate neutrino sources as population

Connecting neutrino sources to their gamma-ray properties

- Candidate neutrino-flare sources show a good match with random distribution (p = 39%)
- Less well-described by energy-flux weighted distributions
 (p = 0.4%-2.1%)




A. Franckowiak, SG et al. 2020, ApJ 893, 2, 162

Candidate neutrino sources as population

Connecting neutrino sources to their gamma-ray properties

- Candidate single HE neutrino sources show an indication of linear correlation with gamma-ray energy flux (p = 64%)
- Mismatch with quadratic energy-flux correlation (p = 0.03%)

A. Franckowiak, SG et al. 2020, ApJ 893, 2, 162

PKS 1502+106: an outstanding laboratory

Quiescent

Hard flare

Soft flare

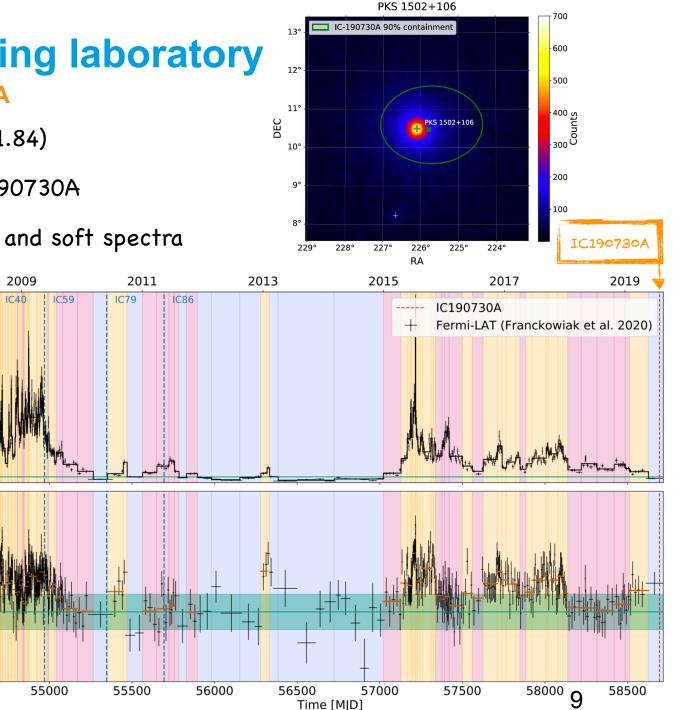
3.5

.0.5 ⁻¹

2.5 E 2.0 - 2.0 - 4 - φ 1.5

> 0.0 1.6

1.8

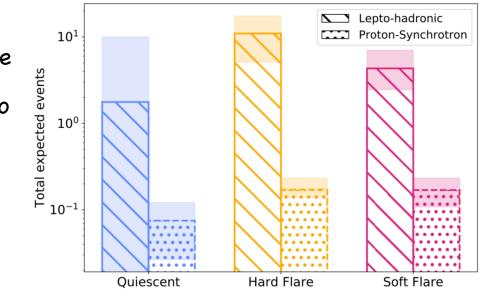

2.6

ndex

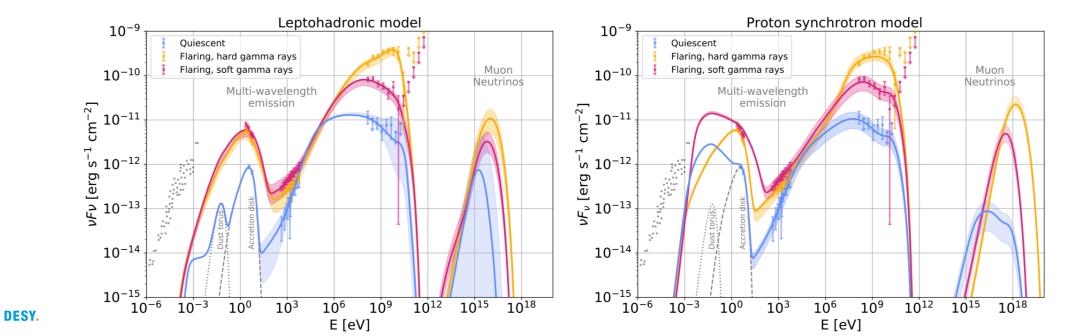
Photo

Coincident with the HE event IceCube-190730A

- The 15th brightest LAT blazar (FSRQ at z = 1.84)
- In low gamma-ray state at the arrival of IC190730A
- Gamma-ray flares are characterized by hard and soft spectra
- SED model in two scenarios (1-zone):
 - Lepto-hadronic
 - Proton Synchrotron
- Proton Synchronic ... The total fluence in each state is used to $\frac{1.5}{1.0}$ compute the expected neutrinos

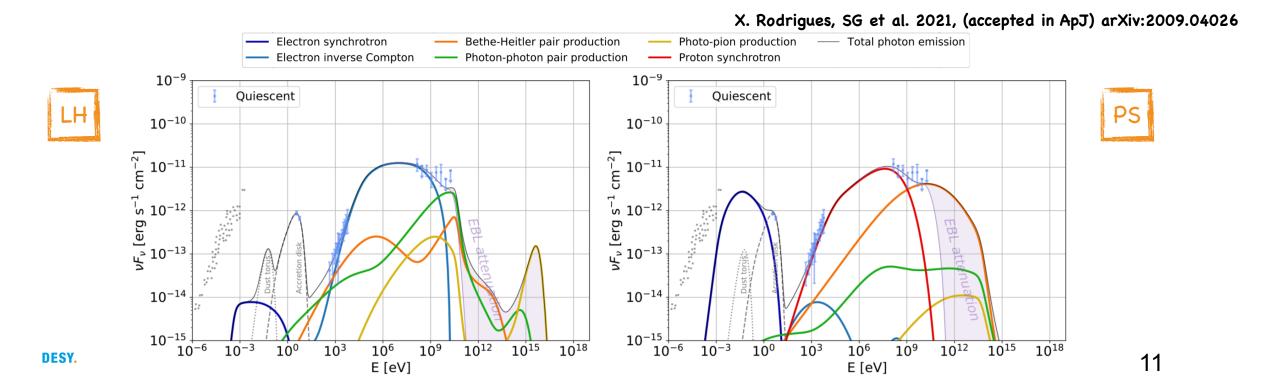


X. Rodrigues, SG et al. 2021, (accepted in ApJ) arXiv:2009.04026 2.8


PKS 1502+106: an outstanding laboratory

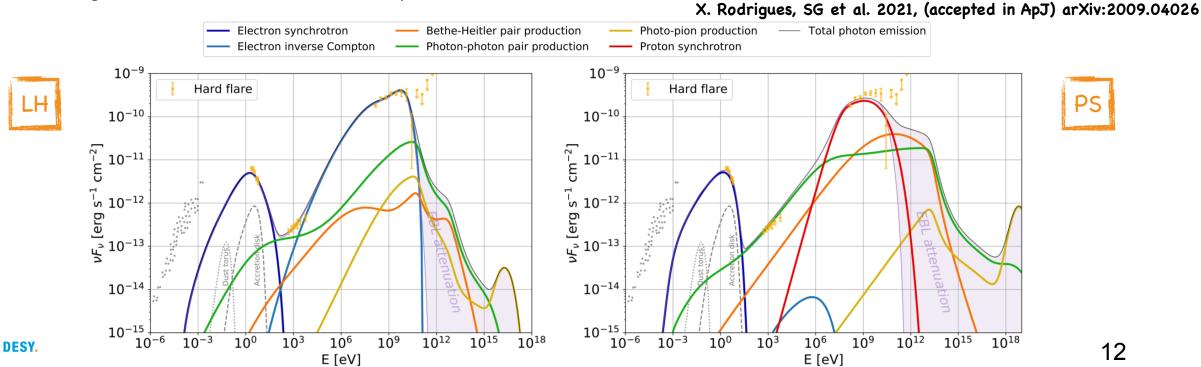
Coincident with the HE event IceCube-190730A

- All models are compatible with PKS 1502+106 as a neutrino source
 - Flaring states are not properly fitted in pure leptonic scenario
- Proton synchrotron models have low expected rate (~0.14 events)
 - Consistent with a single observed event (e.g. Eddington bias)
- Mild tension for the high efficiency of lepto-hadronic models in flaring states (up to ~10 events)


10

What do we learn from PKS 1502+106?

Signatures of hadronic interactions


- The quiescent state is consistent overall with a pure leptonic model (left) except for **E > 1GeV**
- The proton-synchrotron model describes the full second SED hump
- The two models require very different source properties, starting from the magnetic field (B ≤ 1G, B ≥ 10G respectively)

What do we learn from PKS 1502+106?

Signatures of hadronic interactions

- For flaring states, the X-ray band is a good tracer to rule-out purely leptonic models
 - e.m. cascades initiated by HE protons
- Simultaneous multi-wavelength observations are crucial to probe these models. Findings in PKS 1502+106 are confirming important science-cases that require synergies between X-Ray and gamma-ray observatories up to VHE.

Summary

- We have studied the behavior of potential neutrino counterparts individually and as a population:
 - Sources coincident with high-energy neutrinos are in agreement with a linear correlation between neutrino and gamma-ray flux
 - Neutrino flare source candidates are in agreement with the assumption of no correlation between neutrino and gamma-ray flux
- The study of candidate neutrino source PKS 1502+106 shows the key role of Fermi-LAT in the identification of neutrino counterparts
 - Spectral features in simultaneous observations in the gamma and X-ray bands are essential to probe hadronic interaction models in blazars

Thank you.