

Photospheres in gamma-ray bursts: the Fermi view

- 1. Photosphere is not Planck but broader:
 Instrument dependence
 - 2. Significant fraction (1/4) consistent non-dissipative photosphere

Felix Ryde

KTH Royal Institute of Technology, Stockholm
In collaboration with

Asaf Pe'er, Zeynep Acuner, Björn Ahlgren, Husne Dereli-Begue, Shabnam Iyyani, Christoffer Lundman, Filip Samuelsson, Vidushi Sharma

Natural ingredient in the fireball model

Variability Time Scale,

Non-thermal emission
Synchrotron
Internal/external shocks

Natural ingredient in the fireball model

Key parameters:

Bulk Lorentz factor Γ

$$r_{\rm ph} \sim \frac{L\sigma_{\rm T}}{4\pi m_{\rm p}c^3\Gamma^3}$$

Dissipation $\epsilon_{\rm d}(r)$

Dissipative photospheres

Dissipation below the photosphere

See also Thompson+ 14, Ahlgren+15, Ahlgren+19

Synchrotron slow-cooled

A good fit is not conclusive

Subphotospheric dissipation

Synthetic GBM

Non-dissipative photospheres (NDP)

Coasting phase spectrum from a non dissipative jet

Beloborodov 11 Lundman, Pe'er, Ryde 13 Ryde+17

Expected photospheric flux in GBM observations

1. Limited band width of the GBM

Expected photospheric flux in GBM observations

2. Limitations of empirical models

Appearance of the photospheric spectra in the GBM data

Appearance of the photospheric spectra in the GBM data

Acuner, Ryde &Yu 19

Results

We compare this prediction with Fermi/GBM data of

- time resolved time bins
- with S>15
- Time bins with the maximal value of α

α-evolutionof GBMbursts

1/4 of long bursts have spectra consistent with NDP

Acuner, Ryde &Yu 19

Results

1/3 of long bursts have spectra consistent with NDP

 $^{E_{\rm pk}\,({\sf keV})}$ Dereli-Bégué, Pe'er & Ryde 20

For multi-pulsed bursts this fraction decreases

Li, Ryde, Pe'er+21

Alternative analysis: Synchrotron versus photosphere Model comparison using Bayesian evidences

Slow cooled synchrotron from mono-energetic electrons

Non-dissipative photosphere during the coasting phase

For each model we calculate the marginal likelihood or Bayesian evidence $Z_n = \int d\theta \ P(D \mid \theta_n, M_n) P(\theta_n \mid M_n)$

The ratio of the respective evidences, Z_2/Z_1 , summarizes the evidence given by the data in favor of one of the models

$$\ln \frac{Z_2}{Z_1} = \ln Z_2 - \ln Z_1$$

We do this on the complete catalogue of Yu+19 (37 pulses)

 α from fits to CPL

 α_{max}

68% of pulses have $\alpha_{max} > -0.67$

see also Ghirlanda+02

37 spectra are fitted with the synchrotron and the photosphere models

Model comparison using Bayesian evidences: Results

We do this on the 37 pulses in the catalogue of Yu+19

S > 15, time resolved, α_{max} bin

- α good estimator for preferred model: $\alpha \gtrsim -0.5$ prefer NDP
- We also find that information criteria (AIC and DIC) are good approximations of the evidences

Conclusions: Photospheres in GRBs

- 1. <u>Dissipative photospheres:</u>
- Broad spectra, with diagnostic information
- Degenerate with non-thermal models
- 2. Non-dissipative photospheres: Spectra broader than Planck
 - 1/4 of all pulses have at least on bin consistent with emission from a photosphere where the flow is non-dissipative
 - GBM spectra $\alpha \gtrsim -0.5$ prefer NDP over synchrotron
 - Multi-pulse bursts: Fraction decreases

Find photospheric emission:

- 1. $S \gtrsim 15$, time resolved data
- 2. Close to the trigger time