

Study of Earth's Stratospheric γ-Ray Emission in Geographical Coordinates with *Fermi* LAT

Warit Mitthumsiri on behalf of Suttiwat Madlee, Seth Digel, David Ruffolo, and Waraporn Nuntiyakul

9th International *Fermi* Symposium April 15, 2021

Cosmic-Ray (CR)-Induced y-Ray Emission of Earth

9th International *Fermi* Symposium 2021

W. Mitthumsiri

page 2/10

Earth's γ-Ray Zenith Profile

- Peak of profile moved over time due to LAT orbital decay
- Use data from Peak < Θ_{Zen} < Peak + 2.0° because we can assume that these γ rays were produced at ~50-km altitude (top of stratosphere)
- γ rays with $\Theta_{\rm Zen}$ < peak were produced at unknown altitude

9th International *Fermi* Symposium 2021

W. Mitthumsiri

Vertical Geomagnetic Cutoff Rigidity

Earth's magnetic field blocks CRs below cutoff rigidities for certain locations

W. Mitthumsiri

Data Set

9th International *Fermi* Symposium 2021

W. Mitthumsiri

page 5/10

Earth's Stratospheric γ-Ray Intensity Maps

9th International *Fermi* Symposium 2021

Earth's γ-Ray Intensity vs Cutoff Rigidity

- Cutoff rigidity = minimum rigidity for CRs to reach the top of atmosphere at certain location (here for the horizontal direction)
- Earth's γ -ray intensity decreases for increasing cutoff rigidity because CR flux falls steeply with energy
- Minimum CR energy to produce γ rays = the lower bound of the energy bin

9th International *Fermi* Symposium 2021

W. Mitthumsiri

page 7/10

Earth's Stratospheric γ-Ray Yield between 0.2 – 20 GeV

• Assume only CR protons and He, and $Y_{\text{He}} = 1.6Y_p$, $Y_p(P) =$

$$P) = -\frac{[dI/dP_c]_P}{J_p(P) + 1.6J_{\text{He}}(P)}$$

• Interpretation: Y_p = Earth's γ -ray intensity per rigidity emitted from the stratosphere (~50 km) as observed by the LAT divided by CR proton intensity per rigidity near Earth

W. Mitthumsiri

Earth's γ-Ray Spectrum

Summary

- Using *Fermi* LAT data, we obtain the first geographical maps of the Earth's stratospheric γ-ray emission from CR air showers
- We study associations between γ-ray emission intensity and the geomagnetic cutoffs for CRs
- We calculate the stratospheric γ-ray yield function between 0.2 – 20 GeV due to CR protons
- This work presents unique data on CR interactions with the heliosphere, the geomagnetic field, and the atmosphere

Back Up 1: High-Cutoff Neutron Monitor Count Rate

Back Up 2: Atmospheric Column Density

