Recent VERITAS Highlights

Ninth International Fermi Symposium
16 April 2021
Alisha Chrome for the VERITAS Collaboration
Talk Outline

- Current VERITAS performance
- Major science highlights
 - Galactic
 - High energy binary+plerion PSR J2032+4127
 - High energy binary HESS J0632
 - Active Galactic Nuclei
 - Detection of blazar B2 1811+31
 - Detection of radio galaxy 3C 264
 - Other
 - Galactic Center
 - Stellar angular diameters
- Summary and future of VERITAS

Current VERITAS Performance

- Four 12m Cherenkov telescopes in southern Arizona, at the Fred Lawrence Whipple Observatory.
- Full-scale operations began: September 2007
- Sensitivity: detect 1% of the Crab flux in < 25 hours
- Energy Range: ~85 GeV to ~30 TeV
- Angular resolution: ~0.08 degree at 1 TeV.
- Field of view: 3.5 degrees
- Observing time: ~1,300 hours per season
- About 80 members from ~20 institutions
Current status and future projections

VERITAS observatory
Highlights: Galactic, AGN, Other
Project Future

64 total sources
newest source (Oct. 2020): B2 1811+31

> Shutdown due to COVID-19 from March-June 2020.

> Since operations resumed, we operate with local technical staff, with remote observers.

> VERITAS site operations are fully funded through 2022. The Collaboration has committed to seek funding to operate the array until 2025.
PSR J2032+4127 is a pulsar/Be star binary system, period approximately 50 years. The pulsar also powers a pulsar wind nebula, visible in gamma-rays.

November 13 2017 was the most recent periastron. Multiple telescopes dedicated observing in the months leading to and following periastron, including gamma-rays and X-rays.

VERITAS spectrum, high (periastron) & low states (June-Oct)

Science Highlights: New Surveys of HESS J0632+507

Archer et al. 2019 (ApJ 888, 115) conclude that a leptonic model is a good fit to the joint X-ray and gamma SED, further supporting the pulsar scenario.

- Binary system is a B0pe star, surrounded by a thick equatorial disk, and an unknown compact object, no pulsations detected.
- Orbital period from long-term Swift observations: 315 (+6/-4) days. Two orbital solutions exist.
- The paper reports joint analysis of simultaneous VERITAS and NuSTAR (hard X-rays) observations in November and December 2017.
- Two other joint collaboration articles on the long-term light curve are under internal review:
 - Another joint paper with NuSTAR
 - VERITAS, HESS, and MAGIC observations, 2004-2019

The upcoming joint H.E.S.S., VERITAS, and MAGIC article consists of 450 hours of exposure, the deepest study at TeV energies. Preliminary results were shown at ICRC 2019

- VERITAS has over 250 hours of exposure.
- Measured orbital period with gamma-ray data and two methods: 318.7 ± 3.4 days and 316.3 ± 4.3 days. Consistent with X-ray measurement: $315 (+6/-4)$ days
- Upcoming joint TeV publication:
 - looks for orbit-to-orbit variability
 - isolates outbursts for separate analysis
 - spectral analysis between phases and orbits
 - looks for correlation across X-ray, gamma, and optical

• B2 1811+31 is a BL Lac-type blazar at a redshift of 0.117.

• B2 1811+31 showed high levels of activity at optical wavelengths and in Fermi-LAT’s GeV band during the first half of October 2020.

• After reported detection by MAGIC (ATel #14090), VERITAS observed B2 1811+31, from October 15-19 2020.

• Detected with a statistical significance level of 7 standard deviations after 4.3 hours of livetime.

• Preliminary VERITAS soft photon index: 4.09 +/- 0.6

• Preliminary VERITAS mean flux (E>250 GeV): 6 +/- 1 % Crab
Science Highlights: new VERITAS source 3C 264

- Most distant radio galaxy seen at very high energies.
- Statistical significance of 7.8 standard deviations after ~57 hours of live time.
- VHE flux is variable. Highest flux observed in 2018 coincided with modestly elevated fluxes observed in other wavelengths.
- VERITAS continues to monitor this source.

VHE spectrum observed by VERITAS in 2018

Index = 2.20 +/- 0.27
Flux ~ 0.7% Crab above 315 GeV

Light curves measured by VERITAS and Swift-XRT

Science Highlights: Galactic Center

- Submitted journal article for publication, currently under review.
- **155 hours** of large zenith angle of galactic center observations.
- Spectral analysis: diffuse ridge emission, VER J1745-290, SNR G0.9+0.1, and HESS J1746-285
- The galactic center is a regular observing target for VERITAS.

![diffuse ridge emission spectra](image)

Preliminary

- $E^2 dN/dE$ (TeV cm$^{-2}$ s$^{-1}$) plot
- Power law
- Index: 2.19 ± 0.20

Significance map > 2 TeV

![significance map](image)

Significance map > 10 TeV

![significance map](image)

Credit: NASA/DOE/Fermi LAT Collaboration

Alisha Chromey : 9th Fermi Symposium (Virtual)
Science Highlights: New gamma-ray targets and beyond

VERITAS operates foremost as a gamma-ray telescope. However, with multiple multi-messenger discoveries since 2007 and new optical applications of telescope hardware, VERITAS has a diverse list of science targets, including:

- **Gamma-ray follow-up**
 - Fast Radio Bursts: observing repeating FRBs, time-coincident with radio observations
 - LIGO and IceCube: follow up observations on alerts (ex: TXS 0506+056)
 - Details in Wei-dong Jin Parallel-7

- **Optical**
 - Fast Radio Bursts: also searching for optical signal
 - Stellar angular measurement: stellar intensity interferometry and asteroid occultation
 - Optical SETI: searching for nanosecond optical flashes, consistent with artificial origin
VERITAS has two publications in Nature Astronomy reporting on the angular sizes of multiple stars.

Stellar Intensity Interferometry (SII)
- angular diameters of β Canis Major and ε Orionis with precision better than 5%
- current SII limiting magnitude: $m_V \approx 3.5$
- over 100 hours of SII observations of OBA stars

Asteroid occultations
- angular diameters of two stars 10.2 and 9.9 V-magnitude
- can view ~5 occultations per year

Direct measurement of star angular diameter at < 0.1 milliarcsecond scale!

Comparison of VERITAS asteroid occultation results to other directly measured stellar angular sizes.
Future of VERITAS

- This is VERITAS’s 14th season of full-scale operation!
- The scientific output remains strong; twenty papers have been published from 2018 to now, with a few coming up soon for publication, including joint collaboration projects.
- Telescope operations guaranteed to continue through 2022
- The prototype SCT telescope for CTA, also at the Whipple observatory with VERITAS, has detected the Crab Nebula, and is undergoing further development.

Operating beyond 2022
- Joint science between VERITAS and pSCT
- Analysis methods to improve source sensitivity
- Telescope operation until surpassed by CTA (~2025)
- SII upgrade proposal

CTA prototype, pSCT, inaugurated in Jan. 2019
This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, and by the Helmholtz Association in Germany. This research used resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy’s Office of Science, and resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.
References

10. VERITAS, ATel #14104
Backup Highlights

VERITAS observatory

Highlights: Galactic, AGN, Other

Project Future
Science Highlights: Electron and Iron Spectrum

Electron spectrum 300 GeV to 5 TeV

- About 300 hours of observation
- Broken power law with break at ~710 GeV

Iron spectrum 20 TeV to 500 TeV

Power law with:
\[\gamma = 2.82 \pm 0.30 \text{(stat)}\pm 0.24 \text{(sys.)} \]
\[f_0 = (4.82 \pm 0.98 \text{(stat.)})^{+2.12}_{-2.70} \text{(sys.)}) \cdot 10^{-7} \text{m}^{-2} \text{s}^{-1} \text{TeV}^{-1} \text{sr}^{-1} \]
\[E_0 = 50 \text{ TeV} \]
Science Highlights: TXS 0506+506

- On September 22 2017, IceCube reported detection of a high-energy astrophysical neutrino candidate event
- VERITAS performed observation of the blazar between 2017 September and 2018 February
- 5.8 sigma detection by VERITAS after 35 hours of observation
- ~1.6% Crab (E>110 GeV)
- VERITAS continues to perform follow-up observations
On September 22 2017, IceCube reported detection of a high-energy astrophysical neutrino candidate event.

VERITAS performed observation of the blazar between 2017 September and 2018 February.

5.8 sigma detection by VERITAS after 35 hours of observation.

~1.6% Crab (E>110 GeV).

VERITAS continues to perform follow-up observations.
The 2019 article concludes that a leptonic model is a good fit to the joint X-ray and gamma SED, further supporting the pulsar scenario.

- Binary system is a B0pe star, surrounded by a thick equatorial disk, and an unknown compact object, no pulsations detected.
- Orbital period from long-term Swift observations: ~315 days. Two orbital solutions exist.
- VERITAS and NuSTAR (hard X-rays) published in 2019 a joint analysis on simultaneous observations in November and December 2017.
- Two other joint collaboration papers on the long-term light curve are under internal review:
 - Another joint paper with NuSTAR
 - VERITAS, HESS, and MAGIC observations, 2004-2019

SED data-model comparison for the two orbital solutions in red and blue, overlay on the Dec. 2017 data.
Science Highlights: Galactic Center

VERITAS observatory
Highlights: Galactic, AGN, Other
Project Future

Spectra coincident with Sgr A*

HESS J1746-285 spectra

SNR G0.9+0.1 spectra

Preliminary

C.B. Adams et al. (submitted for publication)
Science Highlights: Stellar Angular Diameters

Ingress and egress light curves for asteroid occultations

Comparison of angular size measurements and stellar radius estimates, compared to others available in the literature.

Alisha Chromey : 9th Fermi Symposium (Virtual)