Eliminating single-band dominance in dual-band pulsar light curve fitting

AS Seyffert 1 C Venter 1 AK Harding 2

1Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 58545, USA

Ninth International Fermi Symposium, 12-17 April 2021
Overview

1 Background
 - Statistical LC Fitting
 - Real-world Fits

2 Finding a Better Statistic
 - The Cause of the Failure
 - The Scaled-flux Standardised $\Psi^2_{\Phi,c}$ Statistic

3 Synthetic and Real-world Tests
 - Characterising Dual-band Statistics
 - Results—Synthetic Test
 - Results—Real-world Test

4 Conclusion
Background
Minimising $\chi^2_c = \chi^2_r + \chi^2_\gamma$ to find M^{PCS}_c (yellow LC pair) yields

$$\vartheta^{\text{PCS}} = \left((65^{+1}_{-1})^\circ, (56^{+1}_{-2})^\circ \right)$$

(yellow diamond); a point estimate of ϑ_{true} (yellow dot)
Background Real-world Fits

LC pair $\chi^2_r \chi^2_\gamma \chi^2_c$

$M_c^{\text{pcs}} \quad 175508 \quad 17960 \quad 193467$

$M_c^{\text{eye}} \quad 295657 \quad 524 \quad 296181$

Seyffert, Albertus (NWU)
Eliminating dominance in pulsar LC fitting
Fermi Symposium 2021
Finding a Better Statistic
The Cause of the Failure

Stated simply

Equal decreases in χ^2_r and χ^2_γ *do not necessarily correspond to equal increases in the joint* GOF. *Therefore, the definition of* χ^2_c *effectively calls for two quantities that express GOF in differing units, to be added together.*

To demonstrate this:

- Define the *scaled flux* $\Phi^2 = \chi^2(B)$; the magnitude of the perturbation the pulsar effects in a given band.

- Express χ^2_r and χ^2_γ in units better suited to GOF via the direct (single-band) GOF statistic

$$\Psi^2_\Phi(M) = 1 - \frac{\chi^2(M)}{\Phi^2}$$
The Cause of the Failure

Leveraging $\Psi_{\Phi,r}^2$ and $\Psi_{\Phi,\gamma}^2$ reveals that χ_c^2 is equivalent to this *direct* GOF statistic:

\[
\begin{align*}
\left[\Psi_c^2 \right]_{\Phi} &= \frac{\Phi_r^2}{\Phi_c^2} \Psi_{\Phi,r}^2 + \frac{\Phi_{\gamma}^2}{\Phi_c^2} \Psi_{\Phi,\gamma}^2
\end{align*}
\]

\[\text{(with } \Phi_c^2 = \Phi_r^2 + \Phi_{\gamma}^2 \text{)}\]

- The single-band GOF contributions are implicitly weighted
- Defining the *scaled flux ratio* $\lambda_{r\gamma} = \Phi_r / \Phi_{\gamma}$, the relative weight of the radio GOF is $\omega_{r}^{\text{pcs}} = \lambda_{r\gamma}^2$
- Single-band dominance: e.g., $\Phi_r^2 \gg \Phi_{\gamma}^2 \Rightarrow \left[\Psi_c^2 \right]_{\Phi} (M_c) \simeq \Psi_{\Phi,r}^2 (M_r)$; i.e., that χ_c^2 effectively disregards the γ-ray–band GOF.
A more appropriate extension of the single-band χ^2 statistic (for parameter estimation) would be one that grants Ψ_r^2 and Ψ_γ^2 equal weight. Adding in the requirement that it should be scaled-flux normalised yields the scaled-flux standardised statistic

$$\Psi_{\Phi,c}^2(M_c) = \frac{1}{2} \Psi_r^2(M_r) + \frac{1}{2} \Psi_\gamma^2(M_\gamma)$$

$$= 1 - \frac{1}{2} \left[\frac{1}{\Phi_r^2} \chi_r^2(M_r) + \frac{1}{\Phi_\gamma^2} \chi_\gamma^2(M_\gamma) \right].$$

- $0 < \Psi_{\Phi,c}^2 < 1$ for a favourable joint fit
- $\Psi_{\Phi,c}^2 = 0$ for a background-equivalent (or “null”) joint fit
- $\Psi_{\Phi,c}^2 < 0$ for a bad joint fit
Advertisement

This intuitive argument is just the tip of the iceberg! Seyffert et al. 2021, wherein we derive $\Psi_{\Phi,c}^2$ with full mathematical rigour, is coming soon!
Synthetic and Real-world Tests
Characterising Dual-band Statistics

Causative factors

- Uncertainty disparity: $\lambda_{\gamma \gamma}$ (per fit)
- Single-band best-fit non-colocation: η_{s} (per fit)

Effect size

- Single-band priority: f_{r} (per fit)
- Non-colocation penalty: κ (per fit)
- Precision-determined dominance: F (population)
Synthetic and Real-world Tests

Characterising Dual-band Statistics

Seyffert, Albertus (NWU)

Eliminating dominance in pulsar LC fitting

Fermi Symposium 2021 13 / 23
Characterising Dual-band Fits—Causative Factors

1. **Uncertainty disparity:**

 \[
 \log(\lambda_{r\gamma}) = \log(\Phi_{r}) - \log(\Phi_{\gamma})
 \]

 - Positive (negative) if the radio (\(\gamma\)-ray) LC is more sensitive
 - Symmetric about \(\log(\lambda_{r\gamma}) = 0\) (because of the logarithm)

2. **Single-band best-fit non-colocation:**

 \[
 \eta_{s} = \Delta \Psi_{\Phi,r}^{2}(M_{c,r}^{\gamma}) \cdot \Delta \Psi_{\Phi,\gamma}^{2}(M_{c,\gamma}^{r}) \geq 0
 \]

 - \(\eta_{s} = 0\) for colocated single-band fits
 - Surface area of the rectangle defined by \(M_{c,\gamma}^{}, M_{c,r}^{r}\) and \(K_{c}^{col}\)
 - *For some context:* If the single-band fits were to lie where the arrows point, then \(\eta_{s}\) would be 1
Characterising Dual-band Fits—Effect Size

1. Radio priority:

\[
f_r = \begin{cases} \frac{\Theta_r - \pi/4}{\pi/4}, & \eta_s > 0 \\ 0, & \text{otherwise,} \end{cases}
\]

- \(f_r = 0 \) if no waveband is prioritised
- \(0 < f_r \leq 1 \) if the radio GOF is prioritised
- \(-1 \leq f_r < 0 \) if the \(\gamma \)-ray GOF is prioritised

2. Non-colocation penalty
Characterising Dual-band Statistics

(a)

(b)

fr

fr

$log(\lambda_{r\gamma})$
Characterising Dual-band Statistics—Effect Size

1 Precision-determined dominance: (for a pulsar population of size N)

$$F = \frac{\sum_{k=1}^{N} \log(\lambda_{\gamma},k) \cdot \tilde{\eta}_{s,k} \cdot f_r,k}{\sum_{k=1}^{N} \left| \log(\lambda_{\gamma},k) \right| \cdot \tilde{\eta}_{s,k}},$$

where

$$\tilde{\eta}_{s,k} = \begin{cases}
\eta_s, & \eta_s \leq 1 \\
1, & \text{otherwise},
\end{cases}$$

- Characterises how close the f_r profile is to an “S” shape
- $F \simeq 0$ for undominated statistics (green) and purely radio– or γ-ray–dominated statistics (red or blue)
- $F \simeq 1$ if the more precise band dominates
- $F \simeq -1$ if the less precise band dominates
Results—Synthetic Test

\[\varepsilon_\gamma = 0.01 = \frac{1}{4} \varepsilon_r \]

\[\varepsilon_\gamma = 0.04 = \varepsilon_r \]

\[\varepsilon_\gamma = 0.16 = 4 \varepsilon_r \]
Results—Synthetic Test

The graph illustrates the results of synthetic tests, showing the relationship between $\varepsilon_\gamma / \varepsilon_r$ and F, with χ^2_c and $\Psi_{\Phi,c}^2$ as indicated by the markers and lines on the graph.
Joint fits for 23 Fermi LAT pulsars

- For the χ^2_c fits: $F = 0.92$ and 0.96 (OG+Cone and TPC+Cone)
- For the $\Psi^2_{\Phi,c}$ fits: $F = 0.37$ and -0.11 (OG+Cone and TPC+Cone)
Conclusion
Conclusion

- The absence of an “S” shape in the f_r profiles for the $\Psi^2_{\Phi,c}$ statistic (in both the synthetic and real-world profiles) demonstrates that it effectively eliminates precision-determined single-band dominance.

- Moreover, it achieves this in a robust fashion, without the need for sporadic intervention.

- The general nature of the form of the $\Psi^2_{\Phi,c}$ statistic’s definition (i.e., the fact that it’s effectively just an average) means that it can easily be extended to more than two wavebands. (*With the caveat that all the LCs must be the result of perturbations.*)

- Interestingly, taking the average $\Psi^2_{\Phi,c}$ value across a population in essence yields a $\Psi^2_{\Phi,c}$-like performance score for the model used.
Thank you!