

Locating the gamma-ray emission in Flat Spectrum Radio Quasars

Atreya Acharyya, Paula Chadwick, Anthony Brown atreya.acharyya@durham.ac.uk

Image credit: M. Kornmesser, ESO

- Background
- The sample
- Constraining size and location of emission region from:
 - Variability timescales
 - Presence of spectral cut-off
 - Energy dependence in cooling timescales
 - VHE photon emission
- Overview

- Flat Spectrum Radio Quasars (FSRQs) are a subclass of blazars characterized by strong broad emission lines
- The close orientation of the jet to the lineof-sight renders the resolution of structures within the jet difficult
- Uncovering the location and origin of the emission is an indirect process
- Two main theories: Broad line region (BLR) and Molecular Torus (MT)

*<u>https://ui.adsabs.harvard.edu/abs/1995PASP..107..803U/abstract</u>

-75°

ra dec projection 75° 60° 45° B2 1520+31 30° 4C +21.35 15° $\star_{CTA}^{3C} 454.3$ PKS 1502+106 -150° -120° -90° -60° 60° 90° 120° 150° ٥° 3C 279 PKS 1510-089 -15° PKS 0454-234 -30° PKS 1424-41 -45° -60°

*See list of monitored sources https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/

 Sample of the nine of the brightest FSRQs reported in the 4FGL catalog

Samma-ray

Space Telescope

The sample

- Each source is also required to have had two flaring episodes with averaged daily flux > 10⁻⁶ ph cm⁻² s⁻¹ within 1σ uncertainty* and a known redshift measurement
- The energy range considered is 100 MeV-300 GeV and time interval investigated is 4th August 2008 to 4th August 2016
- From the eight year lightcurve identify periods of high activity in order to maximise photon statistics

Variability timescales

- Two brightest identified flare periods reanalysed with 3 hour binning
- Can relate the intrinsic variability timescales to the size of the emission region r:

 $r \leqslant c \delta \tau_{int}$

- Here δ is the Doppler factor of the jet as measured from radio observations (Jorstad et al. 2017)*
- Short variability timescales, typically of the order of a few hours and indicates compact emission regions of size ~ 10¹³ m

Ninth International *Fermi* Symposium Exploring the Cosmos: AGN-3: Parallel-14 17th April 2021

Variability timescales

- Assuming a simple one-zone emission model in which the entire width of the jet is responsible for the emission
- Can relate size of the emission region, r, to its distance from the central engine, R, using:

 $r = \psi R$,

- Here ψ is the semi-aperture opening angle of the jet and has typical values between 0.1 0.25
- Emission is predicted to be coming from within the BLR for all sources

Dermi Gamma-ray

Space Telescope

• The MT has a much lower photon density than the BLR, meaning there is less likelihood of pair production

Presence of spectral cut-off

- Emission originating from the BLR would therefore be expected, in general, to be better described by a model with a cut-off (such as a log parabola)
- Re-analyse in daily bins and compared the fits using an Akaike Information Criterion (AIC) test
- The AIC of a model s is given by:

$$AIC_s = -2lnL_s + 2k_{f_s}$$

7

 To compare two models, we look at the difference in AIC values. An AIC difference of >2 generally means that the model with the higher AIC is significantly worse

Ninth International *Fermi* Symposium Exploring the Cosmos: AGN-3: Parallel-14 17th April 2021

Atreya Acharyya, Durham University

Energy dependence in cooling timescales

- Another key difference is IC scattering takes place in the Klein-Nishina regime when the emission region is located inside the BLR, and in the Thomson regime for emission from within the MT
- This results in energy-independent electron cooling times for emission from the BLR and energy-dependent cooling timescales for regions within the MT (for example see Dotson et al. (2012)*)
- To investigate this, I re-analysed the flare periods in two distinct energy ranges: 0.1 - 1 GeV (low energy) and 1 - 300 GeV (high energy), binned in six hourly intervals

*https://ui.adsabs.harvard.edu/abs/2012ApJ...758L..15D/abstract

Gamma-rav

ace Telescope

University

Energy dependence in cooling timescales

- LCCF applied to high and low-energy lightcurves to search for correlations in the data and fitted with Gaussian to find peak
- Significance of the observed peaks obtained from Monte Carlo simulations of 1000 artificial lightcurves

urham

University

- The observation of VHE photons (E > 20 GeV) is generally difficult to explain if one assumes emission coming from the inner regions of the BLR as photon-photon pair production would make the escape of the high energy photons less probable
- To quantify this, I investigate VHE photons emitted by the sample over the entire eight year observation period
- Find some instances of VHE photon emission outside the flare period indicating GeV flares are not necessarily a predictor of VHE emission
- This reinforces the requirement for comprehensive sky surveys in the VHE regime (for example with CTA* and SWGO**)

 * Science with the Cherenkov Telescope Array: <u>https://ui.adsabs.harvard.edu/abs/2019scta.book.....C/abstract</u>
 **SWGO Astro2020 APC White Paper: <u>https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.109H/abstract</u>

- Compare the energy of the most energetic photon observed with the *Fermi*-LAT for each source to the expected photon energy distribution assuming BLR origin of emission
- Simulate 1000 observations for all sources assuming a range of intrinsic cut-off energies
- Test if predicted cut-off is compatible with expected onset of the intrinsic cut-off due to interaction with Lyman alpha photons in the BLR. This is the case for only three sources: 3C 454.3, 3C 279 and 4C 21.35

Atreya Acharyya, Durham University

Exploring the Cosmos: AGN-3: Parallel-14 17th April 2021

- The mixed results of the different investigations indicate that a more complex emission model than a simple one-zone leptonic model is required
- There is evidence to suggest the presence of multiple simultaneously active emission regions both within the BLR and the MT, in most individual sources even during the same flaring episode
- For more details on how I define flares, overall results for each specific source and a comparison to other studies, see our recently published paper

https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.5297A/abstract

Locating the gamma-ray emission region in the brightest *Fermi*-LAT flat-spectrum radio quasars

```
Atreya Acharyya<sup>®</sup>,<sup>*</sup> Paula M. Chadwick<sup>®</sup><sup>*</sup> and Anthony M. Brown<sup>®</sup><sup>*</sup>
Department of Physics, Durham University, Durham DH1 3LE, UK
```

Thank you !

Back-up slides

Defining flare periods

- Look for local peaks in 8 year lightcurve binned in monthly intervals
- Proceed in both directions as long as the corresponding bins are successively lower in flux
- Impose the following conditions
 - The peak of the flare must have a flux greater than twice the average flux during the entire observation period
 - Each bin in the flare must also have a flux greater than the average flux during the observation period
- For this study I focus on the two brightest flares from each source

Ninth International *Fermi* Symposium Exploring the Cosmos: AGN-3: Parallel-14 17th April 2021

sermi Gamma-ray Space Telescope

Summary of results

Source	Sizes of emission region from variability time-scales (10 ¹³ m) ^a Flare 1, Flare 2		Energy-dependent cooling Flare 1, Flare 2	VHE photons from BLR
		Spectral cut-off Flare 1, Flare 2		
CTA 102	$4.78 \pm 0.86, 3.59 \pm 0.59$	BLR, BLR	Multizone, BLR	Incompatible
B2 1520+31	$0.70 \pm 0.12, 3.27 \pm 0.91$	Inconclusive, Inconclusive	Inconclusive, Inconclusive	Incompatible
PKS 1510-089	$6.82 \pm 1.03, 5.30 \pm 1.56$	Inconclusive, BLR	MT, MT	Incompatible
PKS 1502+106	$0.93 \pm 0.18, 1.33 \pm 0.09$	Inconclusive, Inconclusive	MT, BLR	Incompatible
PKS 1424-41	$0.77 \pm 0.24, 2.76 \pm 0.66$	Inconclusive, Inconclusive	Inconclusive, Inconclusive	Incompatible
3C 279	$4.11 \pm 0.34, 4.23 \pm 1.28$	Inconclusive, BLR	Inconclusive, BLR	Compatible
4C 21.35	$2.05 \pm 0.66, 1.67 \pm 0.12$	BLR, Inconclusive	Multizone, Inconclusive	Compatible
PKS 0454-234	$4.55 \pm 0.79, 3.91 \pm 0.67$	Inconclusive, Inconclusive	Inconclusive, Inconclusive	Incompatible

Note. ^{*a*}The variability time-scales imply extremely compact emission regions. Assuming the entire width of the jet to be responsible for the emission, all time-scales are compatible with BLR origin of emission.