

GECAM, a new GW Counterpart All-sky Monitor in 2020's

Shijie Zheng

(On behalf of GECAM Team)

Institue of High Energy Physics, CAS, China

2021-04-17, The Ninth International Fermi Symposium

Outline

- Overview
- Preliminary results
- ☐ Summary & Outlook

GECAM: Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor

Photo by REN Hui (http://www.yidianzixun.com/article/0SKwP948?appid=s3rd_op398&s=op398)

Launched successfully on Dec. 10, 2020 PI: Shaolin Xiong from IHEP, CAS

- Two small satellites: ~160kg for each
- > Altitude: ~600 km
- ➤ Inclination: 29 degree
- ➤ Rocket: CZ-11
- ➤ life time: > 3 years

Scientific objectives

- Monitor the high-energy electromagnetic counterparts of GW events with all the sky, find a large amount of GW GRBs and the other new radiative phenomena to study the merging processes.
- Monitor the possible high-energy radiation of FRB with all the sky to study their physical origin and radiation mechanisms
- Monitor the special GRBs, magnetar outbursts all the time to study of their outburst mechanisms

And X/gamma-ray sources, Terrestrial Gamma-ray Flashes (TGF), Terrestrial electron beams (TEB), pulsars et al.

Main Characteristics of GECAM

Items	Value	Comments	
Orbit	600 km, 29 deg	550-600 km	
Launch and lifetime	2020/12, 3yrs	5 yrs (goal)	
Gamma-ray energy range	8 keV – 2 MeV	6 keV – 5 MeV (goal)	
Gamma-ray detection eff.	≥50%@8 keV	GRD	
Gamma-ray FOV	100% all-sky	Two GECAM satellites	
Burst sensitivity	<2E-8 erg/cm ² /s (20 s, 10-1000 keV)	Band normal spectrum	
Burst location error	< 1 deg (1-σ, stat. error)	1E-6 erg/cm2/s, 10s	
Electron energy range	300 keV - 5 MeV	CPD	
Dead time	≤5 µs (normal event)	GRD and CPD	
Absolute time accuracy	< 10 µs	GPS	
Relative time accuracy	~ 0.5 µs	GRD and CPD detectors	
Data Volume	< 50 GB/day (two satellites)	Except large solar flare	

Real-time alert system

Beidou navigation system (China)

Beidou short messages used to send the onboard trigger info to the ground in ~minutes

Real-time alert system

GRB alert & quick look and submitted to GCN

- From Beidou short message:
 - ~several minutes
- From event data (one satellite):
 - ~several hours
- From event data (two satellites):
 - > 10 hours

Up to now, more than 400 on-board triggers received, including:

GRBs, binaries, pulsars, solar flares, TGFs, particle events...

From trigger to receiving ~1 min

GECAM-B - Trigger 65429420 - 2021-01-27 06:50:20.750 UT

Preliminary results

Performance

GECAM vs. Fermi/GBM, Swift/BAT

Trigger (UTC: 2021-01-01 04:41:38.65)

GECAM 02

Fermi₄GBM

GRB detections

UTC time	GRB	#GCN编号 (GECAM)	Fermi/GBM detetion?
2021-01-19T02:54:09.850	GRB 210119A	29331	Yes
2021-01-20T07:10:48.550	GRB 210120A	29338	Yes
2021-01-21T18:41:48.800	GRB 210121A	29347	No
2021-01-26T10:00:10.600	GRB 210126A	29356	Yes
2021-01-31T12:29:12.000	GRB 210131A	29379	No
2021-02-04T06:30:00.600	GRB 210204A	29392	Yes
2021-02-07T21:52:14.050	GRB 210207B	29486	Yes
2021-02-28T06:38:32.600	GRB 210228A	29588	No
2021-03-07T08:42:38	GRB 210307A		No
2021-03-07T05:56:39.100	GRB 210307B	29614	No

15 GRB in total (partially in work during in orbit test)

Joint localization together with other GRB missions

Clear spectral evolution

IPN location + GECAM Possibly from a neighboring galaxy (80 Mpc) ? ?

New outburst of Magnetar (SGR J1935+2134)

GECAM-B - Trigger 65429420 - 2021-01-27 06:50:20.750 UT

Since Jan 27, a series of bursts have been detected and send to GCN at firstly!

GCN report first timely

The bright, short-duration, soft burst (GECAM detection: Huang et al., GCN Circ. 29363) was detected by GECAM, Konus-Wind, and Swift (BAT) at about 24617 s UT (06:50:17) on January 27. The burst was outside the coded field of view of the BAT.

We have triangulated it to a Konus-BAT annulus centered at RA(2000)=315.213 deg (21h 00m 51s) Dec(2000)=-14.116 deg (-14d 06' 56"), whose radius is 41.658 +/- 0.174 deg (3 sigma).

The position of SGR 1935+2154 lies inside the annulus at 3.5 arcmin from its center line.

Given the positional coincidence (initially suggested in GCN 29363) of this burst with SGR 1935+2154, its time nistory, and sortness or its spectrum (as observed by Konus-Wind), we conclude this burst is likely originated from SGR 1935+2154.

A triangulation map is posted at http://www.ioffe.ru/LEA/SGRs/210127 T24616/IPN/

Co-ordinate observations with FAST, NICER

Solar Flares

GECAMB GRD Vs GOES (20210101)

Crab pulsar

Timing noise < 0.01 phasebin

Profile of Crab pulsar

GECAM detection of Type I burst from NS X-ray Binaries

Atel

PSD confirmation of 4U 0614+09

Candidates

- 4U 1608-52
- 4U 1636-536

GECAM detection of a bright thermonuclear burst from 4U 0614+091

Credential Certification: Yu-Peng Chen (chenyp@ihep.ac.cn)

Subjects: X-ray, Binary, Neutron Star

Tweet

During the commissioning phase, GECAM-B detected a very bright X-ray burst at 2021-01-24711:50:03.600 UTC (denoted as T0, GCM 29350) from a direction centered on Ra: 94.9 degree, Dec: 6.6 degree with an error circle 2.7 degree (1-sigma, statistical only). The burst has a fast rise of 10 s, an exponential fashion decay and a duration of 60 s. With 4 detectors out of 25, the peaks flux is 700 cts/s above the pre-burst emission.

A pulsation at 413 Hz is detected with ~4 sigma. The 2-second time bin burst spectra are well represented by a blackbody, with a temperature peaking at 4.0+/-0.2 keV and a peak flux (3.3+/-0.2) x 10^{-7} erg/cm2/s. The spectrum softens with the temperatures from ~4 keV to ~2 keV during the decay. Assuming the source at a distance 3 kpc, the unabsorbed bolometric peak luminosity is (3.6+/-0.2) x $10^{\circ}38$ erg/s, which is well consistent with the Eddington limit with a stellar mass of 1.4 solar mass for hydrogen-poor matter.

This analysis shows convincingly the burst is a genuine thermonuclear X-ray burst from 4U 0614+09, a faint and persistently accreting neutron star X-ray binary lying within the location error, from which the 415 Hz burst oscillation was first reported with data from Swift/BAT (Strohmayer et al. 2008). Since 4U 0614+091 has a burst recurrence time ~12 day (linares et al. 2012), thanks to the very wide field of view (more than a half sky) of GECAM-B, more bursts should be detected during future observations of GECAM-B.

Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) mission consists of two small satellites (GECAM-A and GECAM-B) in Low Earth Orbit (600 km, 29 deg), launched on Dec 10, 2020 (Beijing Time), which was funded by the Chinese Academy of Sciences (CAS).

Terrestrial Gamm-ray Flashes (TGF)

GECAM Time-Energy Scatter Plot of TGF Candidate for Total Detector Short UT: 2021-03-29T06:56:37.831900

Summary & Outlook

- ➤ GECAM: a new high-energy monitor in the multi-messenger and multi-wavelength era in the early 2020s
- ➤ Launched in Dec 10, 2020. Currently in the commissioning phase
- ➤ Near Real-time alerts with typical latency of ~1 mins
- > Detections of GRBs, SGRs, Type I bursts, Solar flares, TGFs, etc.
- ➤ Welcome to the joint observations and joint analysis!

Thank you for the attention!

Zheng Shijie (<u>zhengsj@ihep.ac.cn</u>) Xiong Shaolin (<u>xiongsl@ihep.ac.cn</u>)