Shaken, not stirred: test particles in binary black hole mergers.
Pieter vd Merwe
North-West University
Center for Space Research
25957937@nwu.ac.za

Abstract
In 2015 the advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) detected the first ever gravitational-wave event GW150914, which is a binary black hole (BBH) system that is formed through the coalescence of two sufficiently massive black holes. The effective one-body problem entails treating two bodies, with masses M_1 and M_2, as test particles in the gravitational potential well of a BBH system close to its inspiral phase with the goal of simulating the associated electromagnetic radiation and resultant spectral energy density distributions of such a BBH system. This could shed light on possible detectable ranges of electromagnetic counterparts to BBH mergers. The potentials are numerically calculated using finite difference methods, under the assumption of non-rotating black holes with the post-Newtonian Paczynski-Wiita potential approximation in tandem with retarded time concepts analogous to electrodynamics. We find that the frequencies of potential electromagnetic radiation produced by these orbits (possibly reaching keV), range between a low k_H to a low $100k_H$. The bulk of radiation is distributed at frequencies below $100k_H$.

Keywords: Binary black hole merger, binary black hole, binary black hole merger simulation, particle acceleration, gravity.

1 The Paczynski-Wiita Potential
The Paczynski-Wiita potential is a Newton-like potential that (for the case of non-rotating BHs) exactly reproduces the marginally bound ($r_{\text{sc}} = 3r_s$) and marginally stable circular ($r_{\text{sc}} = 2r_s$) orbits of the Schwarzschild geometry, as well as the form of the Keplerian angular momentum.

2 Solving the effective one-body problem
The effective one-body problem entails treating two bodies, with masses M_1 and M_2, with a separation $r = r_1 - r_2$ orbiting a common center of mass as a single body with mass $\mu = \frac{M_1M_2}{M_1 + M_2}$. The analytical solution of the circularized, near-inspiral BH orbit can be derived by using the classical Newtonian gravitational potential and Lagrangian mechanics. The position vectors of the two bodies as a function of time in the CoM frame is found to be

$$\mathbf{r}_i = \left(\frac{\mathbf{r}_1^2 - \mathbf{r}_2^2}{\mathbf{r}_1^2 + \mathbf{r}_2^2} \right) \hat{r}_1 + \frac{\mathbf{r}_1^2 - \mathbf{r}_2^2}{\mathbf{r}_1^2 + \mathbf{r}_2^2} \mathbf{r}_2,$$

and

$$\mathbf{r}_j = \left(\frac{\mathbf{r}_1^2 - \mathbf{r}_2^2}{\mathbf{r}_1^2 + \mathbf{r}_2^2} \right) \hat{r}_j + \frac{\mathbf{r}_1^2 - \mathbf{r}_2^2}{\mathbf{r}_1^2 + \mathbf{r}_2^2} \mathbf{r}_j.$$

3 Calculating the acceleration of a charged particle in a near-inspiral phase BH merger
Consider a charged particle, with mass m, position \mathbf{r}, and velocity \mathbf{v}, in the lab frame. If the particle is under the influence of a force F due to the Paczynski-Wiita potentials Φ_{PW}, resulting from the BHs, calculated at retarded position \mathbf{r}_i (that is calculated numerically from the definition of retarded time, $t_i = t - \frac{2|\mathbf{r} - \mathbf{r}_i|}{c}$, and equation 2 using Newton’s method), then we have a set of discretized equations

$$\mathbf{v}_i + \frac{e}{\mu_0} \mathbf{F}_{\text{PW}}(\mathbf{r}_i) = \mathbf{a}_i,$$

and

$$\mathbf{v}_j + \frac{e}{\mu_0} \mathbf{F}_{\text{PW}}(\mathbf{r}_j) = \mathbf{a}_j,$$

that describes the evolution of the particle in a near-inspiral BH system.

4 Calculating the SED of charged particles in a near-inspiral BH merger
The spectral energy distribution (SED) of a single accelerated charged particle is given by

$$I(\nu) = \frac{\mu_0 e^2}{4\pi^2} \left[|\mathbf{v}_i|^2 \delta_{ij} |\mathbf{E}_i(\nu)|^2 + |\mathbf{v}_j|^2 \delta_{ij} |\mathbf{E}_j(\nu)|^2 \right].$$

From this, it is evident that $k_H = \frac{\nu}{c} = |\mathbf{v}_i|^2 |\mathbf{E}_i(\nu)|^2$ and $k_L = |\mathbf{v}_j|^2 |\mathbf{E}_j(\nu)|^2$ needs to be determined in frequency space. This is done by simply taking the discrete Fourier transform of the relevant products

$$k_{ij} = \sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{ij} \mathbf{v}_i^2 |\mathbf{E}_i(\nu)|^2$$

and

$$k_{ij} = \sum_{i=1}^{N} \sum_{j=1}^{N} |\mathbf{v}_j|^2 |\mathbf{E}_j(\nu)|^2,$$

with $i = 1$ and N is the number of data points. From this

$$I(\nu) = \frac{\mu_0 e^2}{4\pi^2} \left[k_{ij} + k_{ij} \right].$$

where $\mu_0 = 4\pi\varepsilon_0$. The total SED from the system is found by summing over all of the particles evolving through the system.

5 Implementing the model in code
The model described in the earlier sections of this chapter is implemented in two separate programs. The first program is written in C++, with the time evolution of each of the position, velocity and acceleration vectors, as well as that of the Lorentz factor, saved as separate output datasets. The second program is a Python program that takes the acceleration and Lorentz factor datasets of the previous program as input, and calculates the Fourier transforms of each particle (as described in Section 3). This is done by using the pyFFTW package that gives a convenient way of implementing the FFTW C++ library within Python.

6 Results
The model, briefly described above, is applied to a BBH system with masses $M_1 = 3M_\odot$ and $M_2 = 2M_\odot$. The initial separation of the BHs are taken to be $r_0 = 10^5$ light-years. A set of 50 particles are randomly distributed in the system, with a uniform probability distribution.

The top panel of figure 1 shows the components of the acceleration parallel and perpendicular to the velocity of a typical particle evolving through the system. The bottom panel shows the separation distance between the particle and event horizon of the two BHs. Figure 2 shows the total SED of the system calculated by summing over the SEDs of all 50 particles.

[Image 1: Acceleration components and separation distances as a function of time for particle 1, with an initial position of $\mathbf{r}_0 = (1.000 \times 10^5, 2.300 \times 10^5, 2.132 \times 10^5) \text{ms}^{-1}$ and initial velocity $\mathbf{v}_0 = (0.000 \times 10^5, 1.333 \times 10^5, 1.333 \times 10^5) \text{ms}^{-1}$.]

[Image 2: Total SED, determined by integrating over all 50 particles distributed in the system. There is a steep drop off that occurs at $\sim 10^7 \text{Hz}$ that occurs due to limitations on the numerical resolution.]

7 Discussion and Conclusion
From the results given in the previous chapter, it becomes evident that the bulk of possible EM radiation that originates from charged particles, accelerated in near-inspiral BBH merger systems (determined from our model), is distributed at frequencies well below the operating ranges of current radio telescopes. The current operating range of the Low-Frequency Array (LOFAR) is $10 - 200 \text{MHz}$. [2] Figure 2 illustrates how the total SED calculated from the model drops off at 10^7Hz, which lies below the frequency range of LOFAR. If we now consider that the inter stellar medium (ISM) plasma frequency is $\sim 28 \text{MHz}$ (for an assumed electron density of 10^4 cm^{-3}), we know that knowledge emitted at frequencies below this threshold will be absorbed by the ISM, and, therefore, the bulk of radiation emitted by the system will be absorbed by the ISM. This means that only radiation in a range of $\sim 30 \text{MHz}$ to $\sim 1000 \text{MHz}$ will emerge from the system and reach the earth.

8 Future Work
The model will be extended to include inspiral phase BH orbits where the possible particle trajectories and resulting gravitational acceleration is expected to become much more chaotic for which the model and code implementation will necessarily include simulations with larger numbers of particles and smaller step sizes, in order to probe possible higher frequency elements. For this reason, it will become necessary to implement more realistic, fully general relativistic equations of motion for charged particles distributed through the system. We have also assumed that neither of the BHs have a magnetosphere, with only gravity acting in the particles distributed within the system. If at least one of the BHs are significantly magnetized, particle dynamics within the system will likely be dominated by the resulting Lorentz forces, rather than the gravitational forces.

References

Acknowledgements
I wish to thank The National Astrophysics and Space Science (NASSP) and Center for Space Research (CSR) for funding and support as well as Prof. Markus Böttcher for his support and supervision with the project.