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Take-away summary

The duration and multivariate parameter
distributions of GRBs (from BATSE,
Fermi, Swift, etc.) are adequately
described by only 2 components [1, 2].
This implies that there are 2 main classes,
the short (mergers) and long (collapsars).
All-in-all, the existence of a presumed
third class of intermediate-duration, soft
GRBs is unjustified.

Discussion

Context. •Fitting the distributions of GRB parameters (duration T90,
hardness ratio H32, etc.) with mixtures of Gaussians leads to concluding
that 3 such components are needed to describe the data accordingly.
•However, the data sets gathered by various instruments are at most
bimodal, hence the existence of a third class is putative. It was
already shown [1] that a mixture of only 2 skewed components is a
better description of the durations than a 3-Gaussian. •This provides a
much simpler explanation that does not require introducing yet another
physical phenomenon.

Methods. •Mixtures of the following multivariate distributions are
examined: Gaussian (2G–8G), skew-normal (2SN–5SN), Student-t
(2T–5T), and skew-Student-t (2ST–5ST). •The models’ performance
is evaluated based on the information criteria, AIC/AICc and BIC [3].
•The best model is the one with the lowest IC score. AIC/AICc are
inclined toward overfitting, while BIC has a tendency to underfit. So
the truth lies somewhere in between.

Gaussian (G) Skew-normal (SN)

Student-t (T) Skew-Student-t (ST)

Figure : 1D illustrations of the employed distributions.

Results 1. •The T90−H32 plane was analysed with 2- and 3-component mixtures. It was found [2] that a 2-component mixture of skewed
distributions is a better description of the BATSE and Fermi data than any of the examined 3-component ones. •For Swift and Konus no
clear answer was obtained, however both AICc and BIC point at skewed distributions. •In case of RHESSI, 2-component mixtures are
unequivocally pointed at. •Suzaku, the smallest data set examined, can be confidently modelled with only 2 Gaussian components.
Results 2. •A multivariate analysis of BATSE data in spaces of various parameters, ranging from 2D and 3D, up to a 4D space of T90 − Ftot−
H32 − P256 (Ftot—total fluence, P256—peak flux at a 256 ms time scale), yielded inconclusive results, pointing at either 2 or 3 components.
•A Monte Carlo testing implied that additional components might be artifacts owing to the finiteness of the data and be a result of
examining a particular realisation of the data as a random sample, thus resulting in spurious identifications.
Results 3. •In case of Fermi GRBs, the space T90 − Ftot − P256 yielded 3 skewed components as the best description. •However, the 5D
space of T90 − Ftot − Epeak − α− β (where Epeak, α, β are the Band parameters) requires only 2 skewed components.

Results 2—BATSE [5]

Best model—3ST
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Results 3—Fermi

Best model—3ST
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Best model—2ST
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Conclusions

•No definite signs of the presumed third GRB class are visible among the examined data sets. •The asymmetry of the data, manifested via
skewed distributions, might arise from a non-symmetric distribution of the envelope masses of the progenitors of long GRBs, or other
inherently asymmetric distributions of physical parameters governing the progenitors or GRBs themselves. •The asymmetry cannot result from
the impact of the redshift distribution on the observables [6].

Results 1 [2, 4]

Contours depict FWHM. Best models are framed.
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Swift [9]
(1033 GRBs)
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RHESSI [11]
(427 GRBs)
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Fermi [8]
(1376 GRBs)
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Konus [10]
(1143 GRBs)
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Suzaku [12]
(259 GRBs)
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