Search for VHE Emission from the MSP PSR J0218+4232

Major Atmospheric

Gamma Imaging

Cerenkov Telescope

Alessia Spolon¹, Sıdıka Merve Çolak², B. Limyansky³, P. M. Saz Parkinson^{3,4, 5} For the MAGIC Collaboration and *Fermi*-LAT Collaboration

¹Università di Padova and INFN, I-35131 Padova, Italy, ²IFAE, Campus UAB, E-08193 Bellaterra, Spain, ³SCIPP, Santa Cruz, CA 95064, USA, ⁴HKU, Pokfulam Road, Hong Kong, China, ⁵LSR, Hong Kong, China

Introduction

PSR J0218+4232 is one of the most energetic millisecond pulsars (MSPs) known and has been considered one of the best candidates for Very High Energy (VHE) gamma-ray emission (E>100 GeV). We analyze 11.5 years of *Fermi*-LAT data (100 MeV-870 GeV) + ~90 hours of MAGIC data (20 GeV - 20 TeV). We find evidence for pulsed emission above 25 GeV based on *Fermi*-LAT data, but no evidence of VHE emission with MAGIC. We give an overview of the theoretical models that can interpret the lack of VHE emission.

- -

Conclusions

We performed a new and deep analysis on the MSP J0218 using 11.5 years of LAT data + 87 hours of MAGIC data:

Theoretical Modelling

Force-free magnetosphere Model [6]

- trajectories of particles injected at neutron star surface
 - From UV to VHE γ -ray
 - 2 populations of particles Ο
 - Primary e^{-}/e^{+} : accelerated by E||
 - Secondary e⁻/e⁺: from polar cap pair cascade
 - Emission: Synchro-Curvature and Inverse Compton
 - Although the model can account for the detected X-ray

emission, it fails to predict the correct level (and spectral shape) of the LAT-detected GeV emission, suggesting that further refinements are required.

LACK of VHE emission (MAGIC) -Consistent with theoretical models: Models do <u>not</u> predict VHE emission. -We are searching for a second component of charged and accelerated particles able to emit VHE emission.

Synchro-Curvature model [7]

- Particles trajectories around the light cylinder (pulsar's magnetosphere) threaded by an E_{μ} .
- \star b (magnetic gradient) is larger than for normal pulsars
 - maybe $B_{L_{1}}$ of MSPs is larger
 - smaller $\dot{R}_{lc} \rightarrow$ region of emission $\ll 1$ km
- <u>Agreement</u> between model and data (X-ray and *Fermi*-LAT) \star • the fractional residual errors are of order $\sim 10\%$

No detection of PSR J0218 at VHE \star Theoretical Models:

100

0.0

- HE: well described by the Syncro-curvature model. - not able to predict the possible VHE emission.

References

[1] Gotthelf, E. V., & Bogdanov, S. 2017, ApJ, 845, 159 [2] Abdo, A. A., Ackermann, M., Ajello, M., et al. 509 2009, Science, 325, 848 [3] Ackermann, M., Ajello, M., Allafort, A., et al. 517 2013, ApJS, 209, 34 [4] Saz Parkinson, P., Belfiore, A., Fidalgo, D., et al. 2017, in Proceedings of the 7th International Fermi Symposium, 8 [5] Garcia, J. R., Dazzi, F., Haefner, D., et al. 2013, in International Cosmic Ray Conference, Vol. 33, International Cosmic Ray Conference, 3008 [6] Harding, A. K., & Kalapotharakos, C. 2015, ApJ, 811, 63

[7] Torres, D. F., Vigano`, D., Coti Zelati, F., & Li, J. 592 2019, MNRAS, 489, 5494

Acknowledgments

This project is supported at HKU by a grant from the Big Data Project Fund (BDPF) and a GRF grant (Project 17307618) from the Hong Kong Government.