
UHECR Interactions As The Origin of
VHE γ-Rays From BL Lacs

Saikat Das1 · Nayantara Gupta1 · Soebur Razzaque2

1Astronomy & Astrophysics Group, Raman Research Institute, India
2Centre for Astro-Particle Physics, University of Johannesburg, South Africa

Motivation
Unattenuated TeV γ-ray spectrum observed in
some high-synchrotron peaked (HSP) blazars is
unexpected due to intrinsic/extrinsic γγ
absorption in EBL and/or Klein Nishina effect.

One-zone Leptonic Model

The high-energy peak in blazar SED is most
efficiently modeled using a one-zone leptonic
emission, where the synchrotron/external photons
are upscattered by relativistic electrons.

SSC & Line-of-Sight γ-Rays

Ultrahigh-energy cosmic rays can interact with
cosmic background photons to produce the
observed γ-ray signal along the line of sight,
provided they are not deflected significantly.

(A) Emission From The Relativistic Jet

Emission region inside the jet contains a relativistic plasma of electrons &
protons moving through a magnetic field B in a spherical blob of radius R.

– The total kinetic power in the jet must be lower than the Eddington
luminosity of the SMBH, i.e., LEdd > Ljet = Le + LB + Lp

Leptons

– The constant injection in the comoving frame of the jet is given by
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– Electrons and positrons are radiatively cooled by synchrotron and
synchrotron self-Compton (SSC) process

– We solve the transport equation to calculate the spectrum at a time t
∂Ne

∂t
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– b(Ee, t) is the energy-loss rate and tesc = R/c is the escape timescale

Hadrons

– Protons are accelerated up to an energy given by the Hillas condition

Ep,max ∼ 2βcZeBR (3)

– Being heavier than electrons, they are not cooled sufficiently inside the jet

Np(Ep) = tdynQp(Ep) =
dN
dEp

= ApE−αp (4)

– Extragalactic propagation of protons produce νe, νµ, γ, e+, e− by
virtue of photo-pion and pair-production interactions on CMB and EBL

– e±, γ can induce electromagnetic cascade down to GeV energies.

Step 1: Source parameters
– Fit Synch spectrum &

calculate SSC spectrum

– B, R, Ee,max, Ee,min, δ, Γ

Step 2: UHECR acceleration
– UHECR interaction and

escape timescale inside jet

– Calculate Ep,max

Step 3: Magnetic fields
– UHECR survival along the

direction of propagation

– Brms of the turbulent field

Step 4: Blazar SED
EM cascade contribution – SED
from SSC+ line-of-sight UHECR
interactions on CMB/EBL

(B) Timescales calculation
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Figure 1. Timescale of photohadronic interactions
inside the jet, with target photons from synchrotron
and IC emission.

1

tpγ
=

c
2γ2

p

∫ ∞
εth/2γp

dε′γ
n(ε′γ)

ε′2γ

×
∫ 2εγp

εth

dεrσ(εr)K (εr)εr

tp
esc =

R2

4D
; D ∝ E 1/2

tp
acc '

20η

3

rL
c
'

20η

3

γpmpc
eB

1. UHECRs interactions with synch & SSC photons inside the jet is low.
2. Acceleration dominates over escape at least up to 1019 eV
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(C) Deflections In Magnetic Field

RMS deflection in CR trajectory over a distance D
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Figure 2. Left: Survival rate of UHECRs as a function of the angle from line-of-sight. Right:
Schematic diagram of blazar emission geometry.

1. Survival rate increases with decreasing B rms and higher θ bin width.
2. Survival rate ξB ≈ 0.45 (< 0.1◦) for Brms = 10−5 nG, D = 1 Gpc

(D) Blazar SED
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Figure 3. Multiwavelength SED of the HBLs, modeled using a pure leptonic model (left) and
a leptonic + hadronic model (right). The attenuation due to EBL absorption is also shown.

The luminosity requirement in UHECRs is given as

LUHECR =
2πd 2

L(1− cos θjet)

ξBfCR

∫ εγ,max

εγ,min

εγ
dN

dεγdAdt
dεγ (6)

(E) UHECRs and secondary neutrinos

x / kpc

20
10

0
10

20

y /
 kp

c

20

10

0

10
20

z /
 k

pc

20

10

0

10

20

1013 1014 1015 1016 1017 1018

Energy [eV]

10 6

10 4

10 2

100

102

104

E2 d
N/

dE
 [e

V 
cm

2  s
1 ]

1ES 1011+496
1ES 0229+200
1ES 1101 232
1ES 0414+009

POEMMA (3-yr)
GRAND (3-yr)
IceCube (2018)

x / kpc

20
10

0
10

20

y /
 kp

c

20

10

0

10
20

z /
 k

pc

20

10

0

10

20

Top: UHECR trajectory in GMF for
Ep,max = 0.1 (left) & 10 EeV (right)

– Neutrino flux is too low for
detection by current instruments.

– A simultaneous observation of p,
γ, and ν is difficult.
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