
A new backend for Distributed 
RDataFrame using AWS Lambda

Jacek 
Kuśnierz

Piotr 
Pasternak

Jacek Kuśnierz
Maciej Malawski

AGH University of Science and Technology 
Kraków, Poland 

25 Feb 2021



Presentation plan

1. Inspiration for the project
2. AWS Lambda, Spark and PyRDF 
3. Project Structure Overview
4. Demo
5. Technical Highlights



How the idea was born

1. I already worked at CERN in TOTEM 
experiment, and there I met ROOT

2. Inspirations for the project: 
a. Spark ROOT
b. PyRDF
c. Swan Totem Helix Nebula
d. PyWREN



Why we did that

1. An obvious objective: bachelor thesis.
2. Less obvious objective: 

a. we have tool for distributed computing - PyRDF
b. so far the investigation went into managed infrastructure
c. we want to try unmanaged distributed backend

3. I work @CS job, so it was easier to use tech known to me (AWS Lambda). 



PyRDF



PyRDF



Blackboxing PyRDF

I took all things beside backend for granted and froze 
them as ‘dependencies’.



AWS Lambda

1. Serverless
2. Unmanaged
3. Cloud Native
4. Good integrations
5. Severe limitations



AWS Lambda - limitations

1. Function memory: 128 MB to 10240 MB
2. Timeout: 900 seconds (15 minutes)
3. Concurrency - default 500-3000, upgradable on request
4. Invocation payload: 256 KB async
5. Deployment package: 50 MB size, max 250 unzipped



PyWren



AWS Lambda vs Apache Spark

Lambda:

1. Unmanaged
2. Default environments are very 

small, very small amount of 
software by default

3. Not much software installation 
allowed

4. No good libraries for handling it 
(PyWREN is a working 
example, but that’s not much)

Spark:

1. Managed
2. Environments are anything you can 

imagine
3. Allows plugging in lots of code
4. Good working libraries
5. Software can be written specifically 

for it, with very simple interfacing.



Structure Overview





Client Server



Client side

In order to make AWS Lambda to work with PyRDF, I needed to do:

1. packing Python ROOT objects.
2. Check if infrastructure is online.
3. Calling Lambdas with packed (pickled) objects as strings.
4. Receive and reduce the results (temporary solution).



Client side - packing functions



Client side - init check

I wanted to check that the infrastructure was ready,
so I put a simple check.



Client side - invoking workers



Client side - sample reducer call



Note: dotted lines are 
not present in current 
implementation



Using the System - demo



Technical Highlights



First: ROOT/docs issues dictating architecture

1. ROOT is big, very big - we have only 50MB deployment package for 
something about 200MB

2. I could use CVMFS, but had three issues:
a. Not sure if the compiled versions would work with AWS Linux, where Lambda runs
b. I have no idea how to authorize to CVMFS, no clear documentation
c. Even if I connected to CVMFS, I still have no proof that dependencies from Centos would work 

on AWS Linux
3. I still have no idea how to authorize to CERN from pure serverless solution



Solution: use EFS

1. No Docker implementation existed at the beginning of the project
2. EFS is just like NFS known from on-premises solutions
3. It allows to store arbitrarily big software
4. It can be attached to Lambda
5. I can then put my own ROOT compiled on AWS Linux Docker image





Terraform - Make for infrastructure

Pictured here: an example 
graph of dependencies for 
Lambda definition.





ROOT Lambda - loading the functions



ROOT Lambda

{



ROOT Lambda - running the analysis



Results

● Proof of Concept works
● Looks promising despite 17s init time per lambda
● Shared file system on EFS - bottleneck
● High cost - new Docker Lambda implementation should solve it



Summary and future work

● set up ROOT C++ JIT environment on AWS



Summary and future work

● set up ROOT C++ JIT environment on AWS
● integrated solution for PyRDF



Summary and future work

● set up ROOT C++ JIT environment on AWS
● integrated solution for PyRDF
● under certain conditions obtain not worse results than the current solution



Summary and future work

● set up ROOT C++ JIT environment on AWS
● integrated solution for PyRDF
● under certain conditions obtain not worse results than the current solution
● run arbitrary software with own environment on Serverless Platform



Summary and future work

● set up ROOT C++ JIT environment on AWS
● integrated solution for PyRDF
● under certain conditions obtain not worse results than the current solution
● run arbitrary software with own environment on Serverless Platform
● next step: move to Docker Lambda and test further



Summary and future work

● set up ROOT C++ JIT environment on AWS
● integrated solution for PyRDF
● under certain conditions obtain not worse results than the current solution
● run arbitrary software with own environment on Serverless Platform
● next step: move to Docker Lambda and test further

Special thanks to:

● Maciej Malawski, Associate Professor of AGH 
- Supervisor of the Project

● Vincenzo Eduardo Padulano - PyRDF expert

Code available at: https://github.com/CloudPyRDF

This work was supported by the Polish 
Ministry of Science and Higher Education, 
grant DIR/WK/2018/13

The project was realised as part of 
Bachelor Thesis at AGH University of 
Science and Technology in Kraków.

Thank you. Questions?

contact: kusnierz@protonmail.com

https://github.com/CloudPyRDF


Backup Slides



EOS Lambda

?


