

Calorimetry for Future Circular Collider

Jana Faltová¹, Juraj Smieško^{1,2} IPNP Seminar, Prague 19 May 2020

¹Charles University, Czechia ²Slovak Academy of Sciences, Slovakia

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Future Colliders

FCC Collider

FCC Detectors

Calorimetry for FCC-ee

Improvements in Noble-liquid for FCC-ee

Conclusions and Plans

Questionnaire

- Are you a fan of new large scale experiments in HEP?
- Are you interested in the progress of the FCC project?
- Would you like to join the preparatory face of the experiment?
- Are you interested in R&D projects or hardware?
- Would you like to know what Juraj and myself are working on?

\square
))
Ц

Questionnaire

- Are you a fan of new large scale experiments in HEP?
- Are you interested in the progress of the FCC project?
- Would you like to join the preparatory face of the experiment?
- Are you interested in R&D projects or hardware?
- Would you like to know what Juraj and myself are working on?

If you answered at least once "YES", you're certainly interested in the topic of this talk!

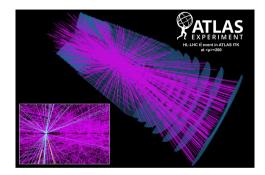
\square
H

Questionnaire

- Are you a fan of new large scale experiments in HEP?
- Are you interested in the progress of the FCC project?
- Would you like to join the preparatory face of the experiment?
- Are you interested in R&D projects or hardware?
- Would you like to know what Juraj and myself are working on?

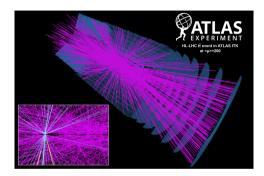
If you answered at least once "YES", you're certainly interested in the topic of this talk!

If your interest still remains after the talk, do not hesitate to contact us :)



Future Colliders

Future Colliders


Large Hadron Collider at CERN

- LHC (2008–2024)
 8–13 TeV, 400 fb⁻¹
- HL-LHL (2027–2040)
 14 TeV, 4000 fb⁻¹

Large Hadron Collider at CERN

- LHC (2008–2024)
 8–13 TeV, 400 fb⁻¹
- HL-LHL (2027–2040)
 14 TeV, 4000 fb⁻¹

Next generation of colliders after LHC era?

European Strategy of Particle Physics 2020

- New e^+e^- collider (Higgs factory) as the highest-priority
- Hadron collider with $E_{
 m cms}$ at least 100 TeV at CERN as a longer term

Why do we need new hadron collider?

Hadron collider as a discovery machine

Open questions

- Dark matter
- Matter-antimatter symmetry
- Neutrino masses

• …

Why do we need new hadron collider?

Hadron collider as a discovery machine Open questions

- Dark matter
- Matter-antimatter symmetry
- Neutrino masses
- ...

Hadron collider can give answers if

- Mass of new particles is in its reach
- The detectors are sensitive enough

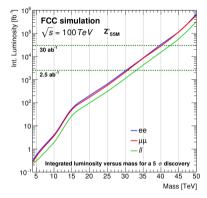


Image: FCC-hh CDR

Why do we need new lepton collider?

Precise measurements of the electroweak sector as a hint of new physics

Highlights from the physics programme

- Higgs boson couplings
- Top quark and Higgs boson masses
- Flavour physics (*b*, *c*, τ)

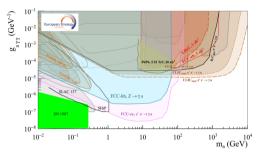


Image: arXiv:1910.11775

Why do we need new lepton collider?

Precise measurements of the electroweak sector as a hint of new physics

Highlights from the physics programme

- Higgs boson couplings
- Top quark and Higgs boson masses
- Flavour physics (*b*, *c*, τ)
- Advantages of e^+e^- colliders
 - Clean environment \rightarrow measurements of unprecedented precision
 - Higgs factories provides model-independent measurements
 - We can starting building the collider (almost) now

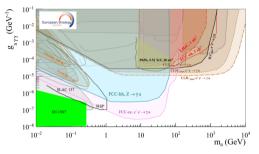


Image: arXiv:1910.11775

Linear Colliders

- ILC (International Linear Collider, Japan)
- CLIC (Compact Linear Collider, CERN)

Circular Colliders

- FCC (Future Circular Collider, CERN)
- CEPC (Circular Electron Positron Collider, China)

Circular vs linear colliders

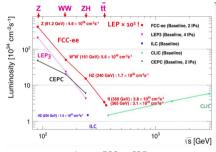


Image: FCC-ee CDR

Linear colliders

- High energy (extendable)
- No synchrotron radiation
- Beams not reusable

Circular colliders

- High luminosity
- Synchrotron radiation
- Circulating beams
- Synergy with future pp collider

Higgs factories: Higgs coupling

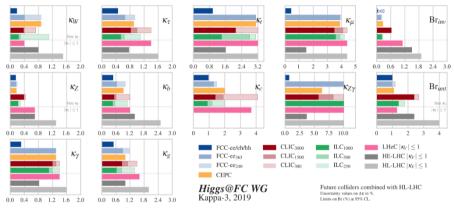
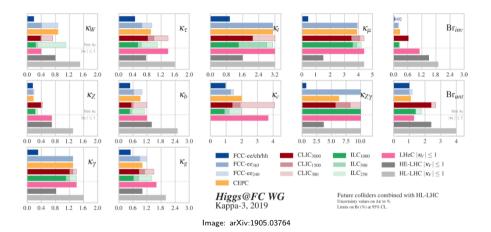



Image: arXiv:1905.03764

Higgs factories: Higgs coupling

Factor 2–10 improvement with e^+e^- colliders wrt HL-LHC Comparable sensitivities in initial stages of e^+e^- colliders (factor of 2 max)

Higgs factories: Higgs self-coupling

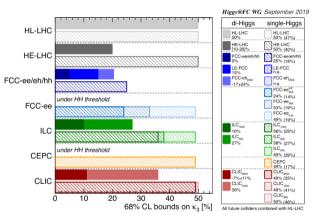
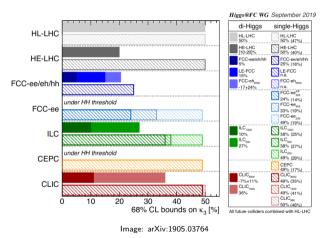
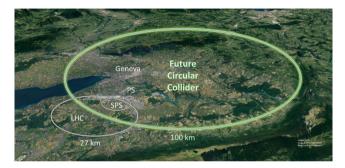



Image: arXiv:1905.03764

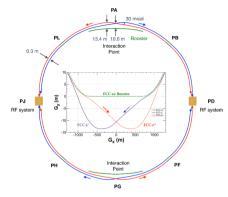
Higgs factories: Higgs self-coupling

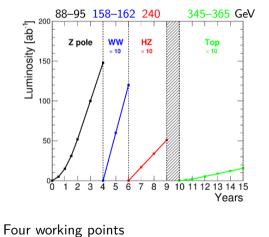
A Higgs factory is needed, even if the ultimate goal is the hadron-hadron collider.


Possible timelines

Proton collider Possible scenarios of future colliders Construction/Transformation: heights of box construction cost/year Electron collider Preparation Electron-Proton collider pan 20km tunnel ILC: 250 GeV 500 GeV 2 ab-1 5,6 B/9 years 1 1km turinel 40 km tunnel China 100km tunnel CepC: 90/160/240 GeV SppC: = FCC-hh 6 B/8 years 11 km tunnel CLIC: 380 GeV 3 <u>TeV</u> 5 ab⁻¹ 5 years 5,9 B/7 years 2.5 ab-1 5.1 B/5 v 7.3 B/5 v 29 lm tunnel 50 km tunnel 17 B/11 years FCC hh: 150 TeV ≈20-30 ab-1 8 years 10.5 B/10year CERN 17 B/11 years 100km tunnel FCC hh: 100 TeV 20-30 ab-1 24B/15 years FCC hh: 100 TeV 20-30 ab-1 8 years FCC hh: 37.6 TeV 1 ab-1 100km tunnel HE-LHC: 27 TeV 10 ab-1 HL-LHC: 13 TeV 3-4 ab-1 From Ursula Bassler 7 B/8 vens 2 years 1.7 B/ 6 year LHeC: 1.2TeV FCC-eh: 3.5 TeV 2 ab⁻¹ 2020 2030 2040 2050 2080 2090 2060 2070

FCC Collider


Future Circular Collider



Stage 1: FCC-ee as Higgs factory, electroweak and top factory at highest luminosities
Stage 2: FCC-hh (100 TeV) as a natural continuation, with ion and *eh* option
Complementary physics, common civil engineering and technical infrastructres
Building on and reusing CERN's existing infrastructures

FCC-ee: Lepton collider

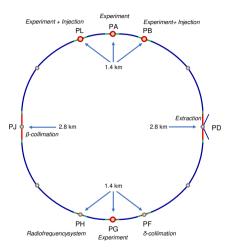
Double ring e^+e^- collider (100 km) Asymmetric IR layout & optics to limit synchrotron radiation

 $10^5 \times$ more Z bosons compared to LEP

FCC-ee: Parameters

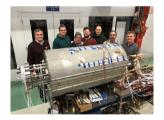
parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

FCC-ee: Key technologies


FCC-ee complete vacuum arc half-cell mock up

including girder, vacuum system with antechamber + pumps, dipole, quadrupole + sext. magnets, BPMs, cooling + alignment systems, technical infrastructure interfaces

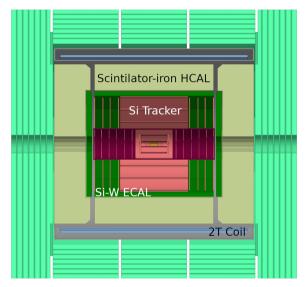
- 400 MHz SRF cryomodule
- Prototype multi-cell cavities for FCC ZH operation
- High-efficiency RF power sources


FCC-hh: Hadron collider

Order of magnitude increase wrt HL-LHC

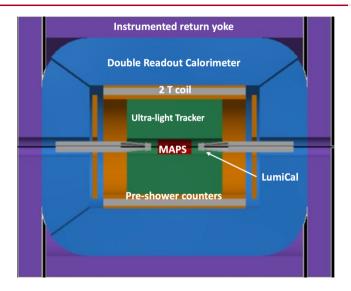
- Centre of mass energy: 14 TeV \rightarrow 100 TeV
- Total integrated luminosity: 4 ${\rm ab^{-1}} \rightarrow$ 20 ${\rm ab^{-1}}$

Key technology: 16 T dipole magnets


Fermilab: Prototype of 14.1 T Nb₃Sn dipole magnet

FCC-hh: parameters

parameter	FC	C-hh	HL-LHC	LHC
collision energy cms [TeV]	1	00	14	14
dipole field [T]	1	16	8.33	8.33
circumference [km]	97	.75	26.7	26.7
beam current [A]	C).5	1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	24	100	7.3	3.6
SR power / length [W/m/ap.]	2	8.4	0.33	0.17
long. emit. damping time [h]	0.	.54	12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2	2.2	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8	3.4	0.7	0.36


FCC Detectors

FCC-ee: CLD Detector

- Based on the detector for CLIC
- Silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter
- Coil outside calorimeter system
- Proved concept, understood performance

FCC-ee: IDEA Detector

- New, innovative, possibly more cost-effective design
- Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system

Calorimetry for FCC-ee

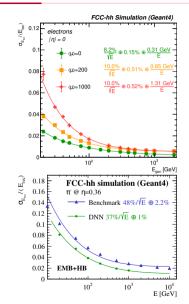
FCC-ee Calorimetry

Requirements:

- Jet-jet inv. mass resolution to resolve W from Z
 - requires $\sim 3\%~(\sim 30\%/\sqrt{E})$
- EM resolution at minimum 15% to sustain jet resolution
 - $B_{
 m S}
 ightarrow D_{
 m S} K$ requires $\sim 5\%$
- Crystal and LAr good EM resolution
- CALICE and Dual Readout good jet resolution

Energy resolution param.:

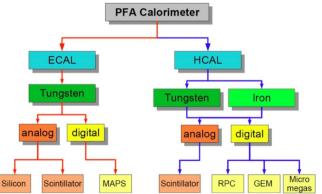
$$\frac{\sigma_{\mathsf{E}}}{\langle E \rangle} = \frac{\mathsf{a}}{\sqrt{E}} \oplus \frac{\mathsf{b}}{E} \oplus \mathsf{c}$$


Typical values:

Technology	a [%]	c [%]
CALICE	15	1
Dual Readout	10	1
LAr	9	
Crystal	3–5	0.5

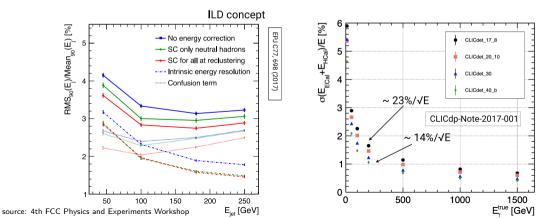
High granularity and Particle Flow needed to achieve energy resolution of 3%

Key features:


- Tested technology in ATLAS, DØ, H1, NA31/48/62
- Radiation hardness, long term stability
- Linear response, uniformity, high control over systematics
- Good energy and timing resolution
- Less than $10\%/\sqrt{E}$ demonstrated

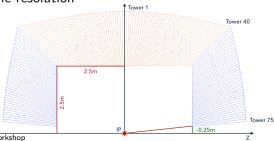
CALICE

Collaboration of mostly Si/Tungsten based high granularity calorimeters


- Large area silicon detectors
- Si Photomultipliers
- Highly integrated front-end electronics with timing
- Very large number of channels

FCC-ee: CLD Calorimeter

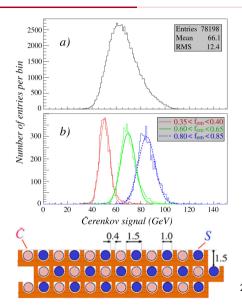
CLD proposal:


- 40 layers SiW ECAL (22 X₀)
- 60 layers Scint/Steel HCAL (7.5 λ_{I} + 1 λ_{I} in ECAL)

24/34

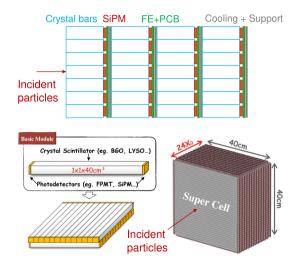
Traits:

- Dual readout calorimeter with 1.5 mm pitch between Cherenkov and Scintillation fibers
- Single EM + HAD sampling calorimeter
- No mechanical longitudinal segmentation ($\sim 7\lambda_{I}$)
- Good EM intrinsic energy resolution
- Excellent hadronic resolution



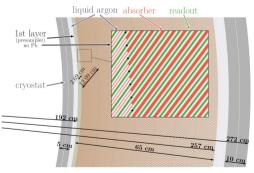
Principle:

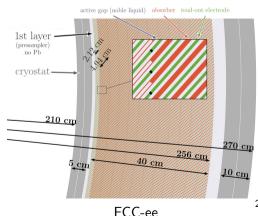
$$S = E \left[f_{\mathrm{em}} + (h/e)_{\mathrm{S}} (1 - f_{\mathrm{em}})
ight]$$


 $C = E[f_{\rm em} + (h/e)_{\rm C}(1-f_{\rm em})]$

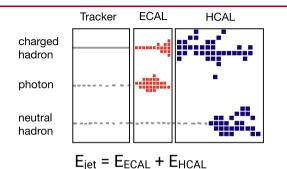
- Correct f_{em} in every event
 - Main source of fluctuations
- Fibers pointing toward IP
 - Scintillating: sense all
 - Clear: sense Cherenkov, mostly electrons

Traits:

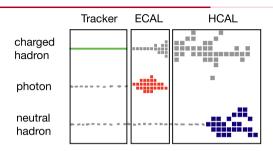

- Mostly investigated for CEPC
- Used by CMS
- Homogeneous structure
- Has optimal intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$



Improvements in Noble-liquid for FCC-ee


Improvements in Noble Liquid Calorimetry

- Noble liquid is viable technology for FCC-ee detectors
- New round of optimizations started with multiple R&D projects
- Both hardware and software improvements are required to get to 3%
- Design driven by Particle Flow

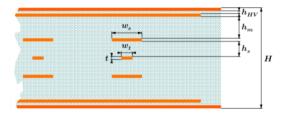


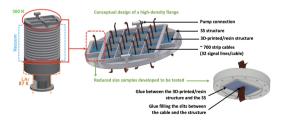
Particle Flow

30% + 70%

- Reconstruct every particle in the event with the best possible precision
- Combine the measurements in subdetectors in an optimal way

 $E_{jet} = E_{charged} + E_{\gamma} + E_{neutral}$


 $60\%\,+\,30\%\,+\,10\%$

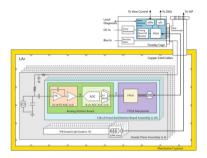

- Charged particles dominated by tracker
- Calorimetry mostly for neutral particles
- Enemy: Confusion

Hardware Improvements FCC-ee I

Higher granularity:

- Both transverse and in depth
- Factor of 10x in comparison to ATLAS LAr (220k \rightarrow 2M cells)
- Using simpler design PCBs
- Signal traces are embedded in PCB
- More signal traces \rightarrow more noise
- High longitudinal segmentation mitigates gap widening towards high radius
- More signal traces \rightarrow high density feedthroughs

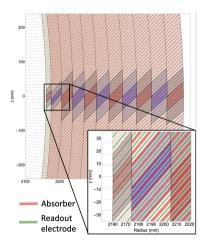
Hardware Improvements for FCC-ee II

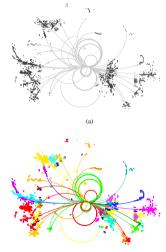

Cryostat vessel:

- Important for low energy particle measurements (bellow 300 MeV)
- Carbon fiber reinforced cryostat under investigation
- Vacuum vessel shared between solenoid and calorimeter

Electronics:

- Warm or Cold electronics
- Charge or current pre-amplifiers
- Dynamic range: 14–16 bits
- Time resolution optimization


sources: 10.1088/1748-0221/15/06/P06017, NASA


Material & Construction

- Alignment and uniformity affects constant term
- Active material (Krypton, ...)
- Absorber material (Tungsten, ...)
- Absorber and sensitive gap thickness
- Plate inclination, layer depths, cell merging
- Interplay between sub-systems

Software Improvements for FCC-ee

- New generic framework Key4HEP emerges from the FCCSW and iLCSoft
- Based on Gaudí but uses Podio
- Integrates tools from simulation, detector description to reconstruction
- Integration of Particle Flow algorithm (Pandora SDK)
- Reimplementation of clustering algorithm (CLUE)

Conclusions and Plans

Future Circular Collider

- FCC Integrated program is an ambitious CERN project
- Feasibility to be proved by the next European HEP Strategy

Noble Liquid Calorimeters

- Noble Liquid calorimeter in reference FCC-hh detector, option in FCC-ee
- Multiple R&D projects directed at noble liquid calorimetry at FCC-ee

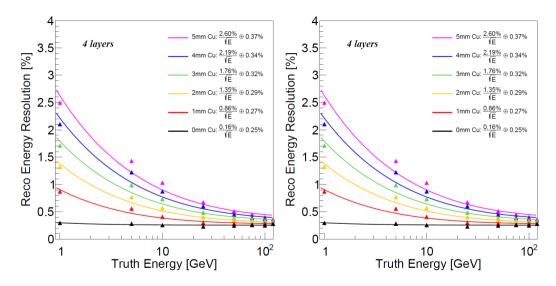
Our involvement

- Performance optimization in the FCC-ee framework
- Implement particle flow algorithm for LAr calorimeter

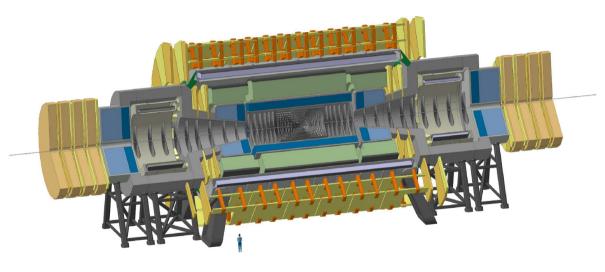
New souls are welcome!

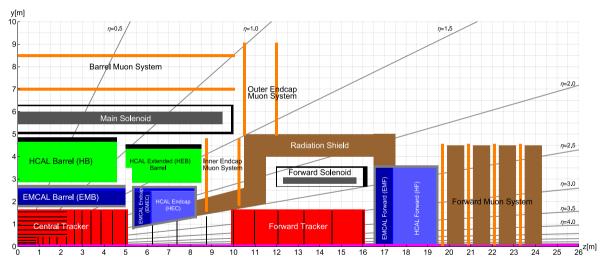
Backup

CERN EP R&D projects relevant for Noble Liquid Calorimetry:


- 1. Read-Out Electrode Design and Performance Optimization
- 2. High Density Feed Through Design Investigations
- 3. Carbon Composite Cryostats
- 4. General SW framework

CERN, Charles U. and LAL Orsay: H2020 project AIDAInnova


Dual Readout Performance


Crystals Performance

FCC-hh: Reference Detector

FCC-hh: Reference Detector

FCC and ILC proposal

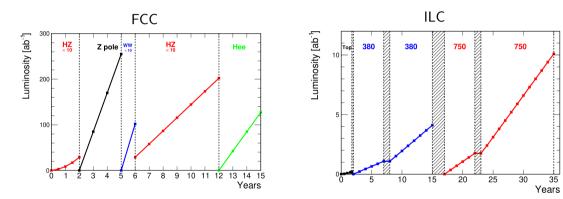


Image: arXiv:1912.11871