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Questionnaire

= Are you a fan of new large scale experiments in HEP?

= Are you interested in the progress of the FCC project?

= Would you like to join the preparatory face of the
experiment?

= Are you interested in R&D projects or hardware? O

= Would you like to know what Juraj and myself are

working on?
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= Are you interested in the progress of the FCC project?

= Would you like to join the preparatory face of the
experiment?

= Are you interested in R&D projects or hardware? O

= Would you like to know what Juraj and myself are
working on?

If you answered at least once “YES", you're certainly
interested in the topic of this talk!

If your interest still remains after the talk, do not

hesitate to contact us :)



Future Colliders



Future Colliders

Large Hadron Collider at CERN

= LHC (2008-2024)
8-13 TeV, 400 fb~!

= HL-LHL (2027-2040)
14 TeV, 4000 fb—!
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Future Colliders

Large Hadron Collider at CERN

= LHC (2008-2024)
8-13 TeV, 400 fb~!

= HL-LHL (2027-2040)
14 TeV, 4000 fb—!

Next generation of colliders after LHC era?

European Strategy of Particle Physics 2020
= New e'Te™ collider (Higgs factory) as the highest-priority

= Hadron collider with E.,s at least 100 TeV at CERN as a longer term 4/34



Why do we need new hadron collider?

Hadron collider as a discovery machine
Open questions

= Dark matter
= Matter-antimatter symmetry
= Neutrino masses
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Why do we need new hadron collider?

Hadron collider as a discovery machine
Open questions

= Dark matter
= Matter-antimatter symmetry
= Neutrino masses
Hadron collider can give answers if
= Mass of new particles is in its reach

= The detectors are sensitive enough
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Why do we need new lepton collider?

Precise measurements of the
electroweak sector as a hint of new

(GeV™)

physics

Highlights from the physics programme

= Higgs boson couplings

= Top quark and Higgs boson masses

107 107 1 10 102 10° 10*
m, (GeV)

= Flavour phySiCS (b, c, 7') Image: arXiv:1910.11775
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Why do we need new lepton collider?

Precise measurements of the

electroweak sector as a hint of new 5%
physics o
Highlights from the physics programme
= Higgs boson couplings
= Top quark and Higgs boson masses
= Flavour physics (b, ¢, 7) Image: arXiv:1910.11775

Advantages of e e~ colliders

= Clean environment — measurements of unprecedented precision
= Higgs factories provides model-independent measurements

= We can starting building the collider (almost) now
6/34
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Lepton colliders at the market

- ilp
Linear Colliders JLF

= |LC (International Linear Collider, Japan)
= CLIC (Compact Linear Collider, CERN)

Circular Colliders
( FCC )
= FCC (Future Circular Collider, CERN) ( hh o= e )

= CEPC (Circular Electron Positron Collider, China) e

Cer )
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Circular vs linear colliders
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Circular colliders
Linear colliders ) o

= High luminosity
= High energy (extendable) o

= Synchrotron radiation
= No synchrotron radiation ] )

= Circulating beams
= Beams not reusable

= Synergy with future pp collider 8/34
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Higgs factories: Higgs coupling
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Higgs factories: Higgs coupling
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Higgs factories: Higgs self-coupling

HL-LHC

HE-LHC
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Al future colliders combined with HL-LHC
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Higgs factories: Higgs self-coupling

Higgs@FC WG September 2019
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A Higgs factory is needed, even if the ultimate goal is the hadron-hadron collider.
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Possible timelines

Possible scenarios of future colliders ™ ° Proton collider
I | Electron collider
=1

China  Japan
e Wl

CERN
1

s Construction/Transformation: heights of box construction cost/year
Preparation
Electron-Proton collider P

20km tunnel [iIEEP Ll
5,6 8/9 years 2ab*

4years

B ST CenC: 90/160/240 Gev
68/8years 16/26/56 ab*

11 km tunnel
CLIC: 380GV
S years 5,98/7years | 15apt

350365 Gev | 178/11 years FCC hh;: 150 TeV ~20-30 ab*

AR 10,5 8/10year
LI FCC hh: 100 TeV 20-30 ab!
24B/15 years
8years
100km tunnel
HL-LHC: 13 TeV 3-4 ab*

I FCC hh; 100 TeV 20-30 ab*

HE-LHC: 27 TeV 10 ab*

FCC-eh: 3.5 Tev 2 ab?

Ll L]

78/8 From Ursula Bassler

2years 178/6ye

2030 2040 2050 2060 2070 2080 2090
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FCC Collider




Future Circular Collider




FCC

Euture

Geneva

#PS

Stage 1: FCC-ee as Higgs factory, electroweak and top factory at highest luminosities
Stage 2: FCC-hh (100 TeV) as a natural continuation, with ion and eh option
Complementary physics, common civil engineering and technical infrastructres
Building on and reusing CERN's existing infrastructures
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FCC-ee: Lepton collider

PA

88-95 158-162 240 345-365 GeV
T T T T

osm 134::%%:‘ o E i Z pole Ww | HZ % Top
% ol %10 %10 % 10 R
- |
: : |
RF system 100} % -
3 %
50; % —
l % i
o LR aa's s el
Double ring et e~ collider (100 km) Years

Asymmetric IR layout & optics to limit

synchrotron radiation Four working points

10°x more Z bosons compared to LEP
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FCC-ee: Parameters

parameter V4 ww H (ZH) ttbar
beam energy [GeV] 45 80 120 182.5
beam current [mA] 1390 147 29 5.4
no. bunches/beam 16640 2000 393 48
bunch intensity [101] 1.7 15 1.5 2.3
SR energy loss / turn [GeV] 0.036 0.34 1.72 9.21
total RF voltage [GV] 0.1 0.44 2.0 10.9
long. damping time [turns] 1281 235 70 20
horizontal beta* [m] 0.15 0.2 0.3 1
vertical beta* [mm] 0.8 1 1 1.6
horiz. geometric emittance [nm] 0.27 0.28 0.63 1.46
vert. geom. emittance [pm] 1.0 1.7 1.3 2.9
bunch length with SR / BS [mm] 35/121 3.0/6.0 3.3/5.3 2.0/25
luminosity per IP [10% cm-2s] 230 28 8.5 1.55
beam lifetime rad Bhabha / BS [min] 68 / >200 49/ >1000 38/18 40/18
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FCC-ee: Key technologies

FCC-ee complete vacuum arc half-cell
mock up = 400 MHz SRF cryomodule

including girder, vacuum system with = Prototype multi-cell cavities for FCC

antechamber + pumps, dipole, quadrupole + ZH operation

sext. magnets, BPMs, cooling + alignment

systems, technical infrastructure interfaces = High-efficiency RF power sources
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FCC-hh: Hadron collider

Experiment + Injection Exp;f;ment Experiment+ Injection O rd er Of m ag n It u d € I ncrease Wrt H L_ L H C
PL PB

= Centre of mass energy: 14 TeV — 100 TeV
= Total integrated luminosity: 4 ab™1 — 20 ab™!

Key technology: 16 T dipole magnets

PJ +——— 2.8km PD
B-collimation

PH PF
) PG ) . .
FadoliequencysyStem  gxperiment & <0/Maten Fermilab: Prototype of 14.1 T Nb3Sn dipole magnet
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FCC-hh: parameters

parameter FCC-hh HL-LHC LHC
collision energy cms [TeV] 100 14 14
dipole field [T] 16 8.33 8.33
circumference [km] 97.75 26.7 26.7
beam current [A] 0.5 11 0.58
bunch intensity [10""] 1 1 2.2 1.15
bunch spacing [ns] 25 25 25 25
synchr. rad. power / ring [kW] 2400 7.3 3.6
SR power / length [W/m/ap.] 28.4 0.33 0.17
long. emit. damping time [h] 0.54 12.9 12.9
beta* [m] 1.1 0.3 0.15 (min.) 0.55
normalized emittance [um] 2.2 2.5 3.75
peak luminosity [10%4 cm2s1] 5 30 5 (lev.) 1
events/bunch crossing 170 1000 132 27
stored energy/beam [GJ] 8.4 0.7 0.36
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FCC Detectors




FCC-ee: CLD Detector

Scintilator-iron HCAL

source: 4th FCC Physics and Experiments Workshop

Based on the detector for
CLIC

Silicon vertex detector and
tracker

3D-imaging highly-granular
calorimeter

Coil outside calorimeter

system

Proved concept, understood
performance
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FCC-ee: IDEA Detector

Instrumented return yoke

Double Readout Calorimeter
2T coil

Ultra-light Tracker

MAPS ——

\ LumiCal

Pre-shower counters

source: 4th FCC Physics and Experiments Workshop

New, innovative, possibly
more cost-effective design

Silicon vertex detector

Short-drift, ultra-light wire
chamber

Dual-readout calorimeter

Thin and light solenoid coil
inside calorimeter system
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Calorimetry for FCC-ee




FCC-ee Calorimetry

Requirements:

— . Energy resolution param.:
= Jet-jet inv. mass resolution to resolve

Wfrom y4 OE a o b o
E _° alamc
= requires ~ 3% (~ 30%/VE) (Ey E E
= EM resolution at minimum 15% to Typical values:
sustain jet resolution
= Bs — DsK requires ~ 5% Technology a[%] c[%]
= Crystal and LAr — good EM CALICE 15 1
resolution Dual Readout 10 1
LAr 9 —
= CALICE and Dual Readout — good Crystal 35 05

jet resolution

High granularity and Particle Flow needed to achieve energy resolution of 3%
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Noble Liquid Calorimetry for FCC-ee

FCC-hh Simulation (Geant4)
T T T
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CALICE

Collaboration of mostly Si/Tungsten based high granularity calorimeters

Traits:

| PFA Calorimeter |

= Large area silicon detectors

= Si Photomultipliers

= Highly integrated front-end
electronics with timing

= Very large number of channels

|S|I|oon| |Scmﬁllator| |MAPS| |Sam|latnr| |RPC | GEM ||m"";;;°s

23/34
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FCC-ee: CLD Calorimeter

CLD proposal:

= 40 layers SiW ECAL (22 Xp)
= 60 layers Scint/Steel HCAL (7.5 A\; + 1 ) in ECAL)

ILD concept
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FCC-ee: IDEA Calorimeter

Traits:

= Dual readout calorimeter with 1.5 mm pitch between Cherenkov and Scintillation
fibers

= Single EM 4+ HAD sampling calorimeter

= No mechanical longitudinal segmentation (~ 7X)

= Good EM intrinsic energy resolution

= Excellent hadronic resolution

Tower 1

Tower 40

2.5m

Tower 75

Pl —— ]-025m 25/34

source: 4th FCC Physics and Experiments Workshop z
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Dual Readout Calorimeter

Principle:

S=E[fum + (h/€)s(1 — fem)]

C = Elfem + (h/€)c(1 — fem)]

= Correct fom in every event

= Main source of fluctuations

= Fibers pointing toward IP

= Scintillating: sense all

= Clear: sense Cherenkov, mostly

electrons

source: 4th FCC Physics and Experiments Workshop
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Crystal Calorimeters

Traits:
= Mostly investigated for CEPC
= Used by CMS
= Homogeneous structure

= Has optimal intrinsic energy
resolution: ~ 3%/vVE @ ~ 1%

source: 4th FCC Physics and Experiments Workshop

Crystal bars SiPM  FE+PCB Cooling + Support

Incident
particles

- 7}?/‘0
Crystal Sclrmllaffr (eg. BGO, LYSO..)
[l 1x1x40cm’ [/‘
\Pho'rode?ec?ors (eg. FPMT, SiPM...Y'
=
nC'dent

' particles

27/34


https://indico.cern.ch/event/932973/

Improvements in Noble-liquid for
FCC-ee




Improvements in Noble Liquid Calorimetry

Noble liquid is viable technology for FCC-ee detectors

= New round of optimizations started with multiple R&D projects

= Both hardware and software improvements are required to get to 3%

= Design driven by Particle Flow

liquid argon absorber  readout

W s
1st layer i
(presampler) ™ S {

—

cryostat—7

source: Brieuc Francois (CERN) FCC'hh

active gap (noble liquid) absorber read-out electrode

__

1st layer —=%

(presampler)
no Pb

cryostat ——
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Particle Flow

Tracker ECAL HCAL Tracker ECAL
charged charged
hadron s hadron EHH
]
. .
photon  fe-ee-- - - "EEEEREE. photon  fec--<- < - q|"iEmit.
[ 1]
neutral [ |l [l __ == =5-"a neutral | 0ol
hadron R Em hadron R Em
Ejet = EecaL + EncaL Ejet = Echarged + Ey + Eneutral
30% + 70% 60% + 30% + 10%
= Reconstruct every particle in the event = Charged particles dominated by
with the best possible precision tracker
= Combine the measurements in = Calorimetry mostly for neutral particles
subdetectors in an optimal way = Enemy: Confusion
29/34
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Hardware Improvements FCC-ee |

Higher granularity:

= Both transverse and in depth P ]
wy h,,
= Factor of 10x in comparison to ATLAS —— o b
LAr (220k — 2M cells) e HEE H

= Using simpler design — PCBs

= Signal traces are embedded in PCB

= More signal traces — more noise
I —

= High longitudinal segmentation

700 strip cables.
(32 signal lines/cable)

4

mitigates gap widening towards high

radius cedsie samples developed to be tested [
v i Glue between the 3D-printed/resin )
. . . structure and the SS
= More signal traces — high density Gt e e
e it e e
feedthroughs

30/34
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https://indico.cern.ch/event/1021554/contributions/4291715/attachments/2219159/3757597/Presentation_meeting_1_April_2021.pdf

Hardware Improvements for FCC-ee Il

Cryostat vessel:

= Important for low energy particle

measurements (bellow 300 MeV)

= Carbon fiber reinforced cryostat under

investigation

= Vacuum vessel shared between

solenoid and calorimeter
Electronics:
= Warm or Cold electronics
= Charge or current pre-amplifiers
= Dynamic range: 14-16 bits

= Time resolution optimization
sources: 10.1088/1748-0221/15/06/P06017, NASA



https://doi.org/10.1088/1748-0221/15/06/P06017
https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/archived/CCTD

Hardware Improvements for FCC-ee Il

Material & Construction o

= Alignment and uniformity affects
constant term

= Active material (Krypton, ..) £
= Absorber material (Tungsten, ...)
= Absorber and sensitive gap thickness

= Plate inclination, layer depths, cell
merging

= Interplay between sub-systems . Readout W N

electrode Radius (mm)

32/34
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https://indico.cern.ch/event/999820/contributions/4200638/attachments/2241010/3799623/ECFA_TF6_NobleLiquid_Brieuc_Francois.pdf

Software Improvements for FCC-ee

= New generic framework Key4HEP emerges
from the FCCSW and iLCSoft

= Based on Gaudi but uses Podio

= Integrates tools from simulation, detector

description to reconstruction

= Integration of Particle Flow algorithm (Pandora
SDK)

= Reimplementation of clustering algorithm
(CLUE)

(b)

33/34
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Conclusion and Plans

Future Circular Collider

= FCC Integrated program is an ambitious CERN project
= Feasibility to be proved by the next European HEP Strategy

Noble Liquid Calorimeters

= Noble Liquid calorimeter in reference FCC-hh detector, option in FCC-ee
= Multiple R&D projects directed at noble liquid calorimetry at FCC-ee

Our involvement

= Performance optimization in the FCC-ee framework
= Implement particle flow algorithm for LAr calorimeter

New souls are welcome!
34/34
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R&D FCC-ee LAr Projects

CERN EP R&D projects relevant for Noble Liquid Calorimetry:

1. Read-Out Electrode Design and Performance Optimization
2. High Density Feed Through Design Investigations

3. Carbon Composite Cryostats
4

. General SW framework

CERN, Charles U. and LAL Orsay: H2020 project AIDAlnnova



Dual Readout Performance
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Crystals Performance
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FCC-hh: Reference Detector




FCC-hh: Reference Detector
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FCC and ILC proposal
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Image: arXiv:1912.11871
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