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CP Violation in PMNS (leptons) and CKM
(quarks)

In 3-flavor mixing the degree of CP violation is determined by the
Jarlskog invariant:

JPMNS
CP ≡ 1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP.
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NuFIT 2.1 (2016)

(JHEP 11 (2014) 052, arXiv:1409.5439)

Given the current best-fit values of the ν mixing angles :

JPMNS
CP ≈ 3× 10−2 sin δCP.

For CKM (mixing among the 3 quark generations):

JCKM
CP ≈ 3× 10−5,

despite the large value of δCKM
CP ≈ 70◦.
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νµ → νe Oscillations in the 3-flavor ν SM

In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos
are best probed using νµ/ν̄µ → νe/ν̄e oscillations (or vice versa).With

terms up to second order in α ≡ ∆m2
21/∆m2

31 = 0.03 and sin2 θ13 = 0.02, (M. Freund. Phys. Rev. D
64, 053003):

P(νµ → νe) ∼= P(νe → νµ) ∼= P0︸︷︷︸
θ13

+ Psin δ︸ ︷︷ ︸
CP violating

+ Pcos δ︸ ︷︷ ︸
CP conserving

+ P3︸︷︷︸
solar oscillation

where for oscillations in vacuum:

P0 = sin2 θ23sin2 2θ13 sin2(∆),
sin2(2θ13)

(A− 1)2

Psin δ = α 8Jcp sin3(∆),
8Jcp

A(1− A)

Pcos δ = α 8Jcp cot δCP cos ∆ sin2(∆),
8Jcp cot δCP
A(1− A)

xx

P3 = α2cos2 θ23sin2 2θ12 sin2(∆),
sin2(2θ12)

A2

where ∆ = 1.27∆m2
31(eV2)L(km)/E(GeV)

and A =
√

2GFNe2E/∆m2
31.

For ν̄µ → ν̄e, Psin δ → −Psin δ︸ ︷︷ ︸
CP asymmetry

,
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νµ → νe Oscillations in the 3-flavor ν SM

In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos
are best probed using νµ/ν̄µ → νe/ν̄e oscillations (or vice versa).With

terms up to second order in α ≡ ∆m2
21/∆m2

31 = 0.03 and sin2 θ13 = 0.02, (M. Freund. Phys. Rev. D
64, 053003):

P(νµ → νe) ∼= P(νe → νµ) ∼= P0︸︷︷︸
θ13

+ Psin δ︸ ︷︷ ︸
CP violating

+ Pcos δ︸ ︷︷ ︸
CP conserving

+ P3︸︷︷︸
solar oscillation

where for oscillations in matter with constant density:

P0 = sin2 θ23
sin2 2θ13

(A− 1)2
sin2[(A− 1)∆],

Psin δ = α
8Jcp

A(1− A)
sin ∆ sin(A∆) sin[(1− A)∆],

Pcos δ = α
8Jcp cot δCP
A(1− A)

cos ∆ sin(A∆) sin[(1− A)∆],

P3 = α2cos2 θ23
sin2 2θ12

A2
sin2(A∆),

where ∆ = 1.27∆m2
31(eV2)L(km)/E(GeV) and A =

√
2GFNe2E/∆m2

31.

For ν̄µ → ν̄e, Psin δ → −Psin δ︸ ︷︷ ︸
CP asymmetry

, A→ −A︸ ︷︷ ︸
matter asymmetry
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Expected Appearance Signal Event Rates

ν Exercise: The total number of electron neutrino appearance events
expected for a given exposure from a muon neutrino source as a
function of baseline is given as

Nappear
νe

(L) =

∫
Φνµ(Eν , L)× Pνµ→νe (Eν , L)× σνe (Eν)dEν

Assume the neutrino source produces a flux that is constant in energy
and using only the dominant term in the probability(no matter effect)

Φνµ(Eν , L) ≈ C

L2
, C = number of νµ/m

2/GeV/sec at 1 km

Pνµ→νe (Eν , L) ≈ sin2 θ23 sin2 2θ13 sin2(1.27∆m2
31L/Eν)︸ ︷︷ ︸

P0

σνe (Eν) = 0.7× 10−42(m2/GeV/N)× Eν , Eν > 1 GeV

Prove that the rate of νe appearing integrated over a constant range
of L/E is independent of baseline for L > 500 km!
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Expected Appearance Signal Event Rates

Nappear
νe

(L) ∝ constant term×
∫

sin2(ax)

x3
dx,

x ≡ L/Eν , a ≡ 1.27∆m2
31 GeV/(eV2.km)

ν Exercise:
C ≈ 1× 1017 νµ/m

2/GeV/yr at 1 km (from 1MW accelerator)
sin2 2θ13 = 0.084, sin2 θ23 = 0.5,∆m2

31 = 2.4× 10−3eV2

Calculate the rate of νe events observed per kton of detector
integrating over the region x = 100 km/GeV to 2000 km/GeV. Use
ROOT to do the integral!

Nappear
νe

(L) ≈ (2× 106events/kton/yr) · (km/GeV)2

∫ x1

x0

sin2(ax)

x3
dx,

Nappear
νe

(L) ∼ O(20− 30) events/kton/yr
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Event Rates vs. Baseline Perfect Focusing

R =
∫

Φ
νµ
perfect(Eν)× σ(Eν)× P(νµ → νe) dEν

(sin2 2θ13 = 0.09, sin2 θ23 = 0.5, δcp = 0, |∆m2
31| = 2.4× 10−3)

Flux: 120 GeV, perfect focusing, ∼ 400m decay channel, on-axis

Normal Hierarchy
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Flux with perfect focusing, matter effect, normal hierarchy

How well can we focus/collect the pions?
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Neutrino Event Rates - Superbeams vs νFactories

From arXiv:1307.7335, for 50 kton.years∗ of exposure:
Super Beams

Experiment Baseline νµ → νµ νµ → ντ νµ → νe

T2K 295km (off-axis)
30 GeV, 750 kW

9× 1020 POT/year 900 < 1 40 - 70
MINOS LE 735km
120 GeV, 700 kW

6× 1020 POT/year 11,000 115 230-340
NOνA 810km (off-axis)
120 GeV, 700 kW

6× 1020 POT/year 1500 10 120 - 200
LBNE (LBNF) LE 1,300km
80 GeV, 1.2MW

1.5× 1021 POT/year 4300 160 350 - 600
LBNE (LBNF) ME 1,300km
80 GeV, 1.2MW

1.5× 1021 POT/year 12,000 690 290 - 430

ν Factory at Fermilab
Experiment Baseline νµ → νµ νµ → ντ νe → νµ

NuMAX I 1,300km
3 GeV, 1MW

0.94× 1020 µ/year 340 30 70 - 120
(no µ cooling)
NuMAX II 1,300km
3 GeV, 3MW

5.6× 1020 µ/year 2000 300 420 - 700
∗ Facility duty factor taken into consideration
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Measurements for DIF Flux Estimation and
Uncertainties

11 / 50



Making
Neutrino

Beams - II

Mary Bishai
Brookhaven

National
Laboratory

Fluxes and ν
rates

Measurements
for DIF Flux
Estimation

Proton beam
measurements

Target hadron
production

Focusing

In-situ flux
measurements

µ flux in NuMI

µ flux in LBNF

ν flux in ND

Off-axis
measurements

Conclusions

Measuring the Beam Current and Position

In-situ measurements of proton beam

intensity with high accuracy
Characteristics of NuMI Beam Po-
sition Monitors:

Software algorithm to search
400 µsec to find the beam.

NuMI bunches come in 6
batches from booster.
Position is measured batch
by batch.

Linear over 15-20 mm. 50
µm accuracy in pretarget.

11 vertical and 13 horizontal
measurements over 360m.

Feedback from BPMs used to auto-steer the beam to target center12 / 50
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Measuring the Beam Profile: NuMI

10 cm Beam Port

Stepper Motor
& Linear Slide

Limit Switch

Beam-intercepting 
Ti foils (5µm)

Limit Switch

• Mechanical/Vacuum System
 “Bayonet”-style insertion is compact
 Frame is never in the path of beam
 Insertion accuracy/repeatability
 Vacuum ~10-9 Torr on 30 l/s ion pump

Proton
beam

• Foil Secondary Emission Monitors
 Beam profile + halo 

measurement
 Very low mass (5 µm Ti)
 Reduced Beam Heating problems
 Ti signal lasts longer in the beam

Beam profile at target needs to be measured
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Hadron production in beamlines

The NuMI beam measured by MINERνA

120 GeV proton beam, graphite target l=95cm, 185 kA pulsed horns (2)
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Hadron production in beamlines

Short baseline beams - sub-GeV: Booster Neutrino Beam
8 GeV proton, Be target l=71cm, 174 kA pulsed horn.

νµ Flux νe Flux
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Hadron Production Experiments

Dedicated large acceptance hadron spectrometers are used to
measure hadrons produced in p-p and p-A collisions on thin/thick
targets. For example the NA49 experiment at CERN:
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NuMI Beam Simulation and 158 GeV p-C NA49
Data
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MC target hadron production must be constrained by external data.
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Ongoing program with NA61/SHINE

Measuring target hadron production for DUNE/T2K

Beamline interactions
per ν in DUNE ND

Event display from NA61

2016 dataset: π+ C/Be at 60 GeV, p+ C,Be at 120 GeV, p+

C,Al,Be at 60 GeV. Currently under analysis.

2017 dataset: π+ Al at 60 GeV,π+ Al at 60 GeV,π− C at 60
GeV, p+ C,Be at 120 GeV, p+ C at 90 GeV.
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Double differential cross-sections on T2K replica
target - 2018
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EMPHATIC at Fermilab

EMPHATIC A new  hadron production experiment for improved 
neutrino flux predictions
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Hadron production 
measurements to reduce flux 
uncertainties from secondary 
and tertiary interactions in the 
neutrino production target

Table-top-sized experiment Ring Imaging Cherenkov from E50 design�9

96

50
75

Using 1/2 scale and only left part here 
Could use 3-inch PMT’s from E61 

Kπ

  50mrad x 75cm = 3.8cm radius 
250mrad x 75cm = 19cm radius

Multi-gap Resistive Plate Chamber (MRPC)

200~300 μm

~10 kV Glass resistive plate
Carbon electrode
Insulator (G10)

Readout strip

Spacer

• Resistive Plate -> Avoid discharge
• Smaller gap -> Better time resolution
• Multi gap -> Higher efficiency, better time resolution

• Can be used under magnetic field

• Low cost

E50 Pole face 
& Internal 
TOF detector

• ~60 ps high time resolution in large area

Amp
Amp

GroundGround

� Developing Čerenkov timing counter
¾Čerenkov lights emit in an extremely short time. 
9Reduce the time spread of photons                  

reaching to the optical sensor
9Having a fast timing response
9It has the advantage to measure 

the better time resolution.

¾Use “Cross shape” acrylic, called X-type, 
which is cut from an acrylic board
9In order to cancel position dependences of 

the time resolution in the Čerenkov radiator

¾The Čerenkov counter is made up of X-type 
acrylic and MPPC with a shaping amplifier 
circuit.

It is the first time to use the Čerenkov
detector for a timing counter                          
with the X-type acrylic.

4
2018/8/28Physics with General Purpose Spectrometer in the High-momentum Beam Line

X-type Čerenkov

X-type Čerenkov

30 cm

30 cm
Si Strip
Detectors

See posters by J. Paley, M. Pavin & T. Vladisavljevic, and T. Sugimoto!

MT6.1-A

Si strip 
detectors

Si strip 
detectors

Trigger 
counter Si pixel 

detectors Space for 
target

Data Taking Statistics
• Number of collected events by DAQ 
• There is actually SSD trigger efficiency (due to limited measurement size)

16

Graphite Aluminum Iron Empty

120 GeV 1.63M 0 0 1.21M

30 GeV/c 3.42M 976k 1.01M 2.56M

-30 GeV/c 313k 308k 128k 312k

20 GeV/c 1.76M 1.76M 1.72M 1.61M

10 GeV/c 1.18M 1.11M 967k 1.17M

2 GeV 105k 105k 183k 108k

Quasi-elastic region

Elastic region

*Lines on top of the data points are not fits

Coulomb-nuclear 
interference region (CNI)

4-momentum transfer (raw data)

23

p + C @ 30 GeV/c

2 week-
long test 
run this 
past 
January 
already 
collected 
useful data.
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Recent EMPHATIC Measurements - 2020

Proof of principal measurements of proton elastic and inelastic
scattering cross-sections:
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MiniBooNE 8 GeV p-Be Hadronic Interaction
Models

Data: Use HARP 8.89 GeV/c p-Be and BNL E910 6.4 GeV/c p-Be
interactions with best fit to parameteric model.
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Interactions with other beamline materials

Helium in the NuMI decay pipe: data and simulations

Hadron interactions in ALL beamline materials must be considered
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Transporting Hadrons: BNB Simulation

Phys. Rev. D. 79, 072002 (2009)

GEANT4 simulation of beamline geometry. Generation of the
primary protons according to expected beam optics.

Simulation of primary p-Be interactions using custom tables for
production of p,n,π±, K± and K0 based on external
hadro-production data.

GEANT4 propagates particles generated in p-Be, including
secondary interactions in the beamline materials. 24 / 50
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BNB Simulation Uncertainties

Ratio to nominal νµ flux

Horn focusing simulation large source of absolute flux uncert.

How do we obtain data to constrain this?
25 / 50
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Uncertainties on MiniBooNE νµ Flux
Determination

Hadron production uncertainties dominate: 15-18%
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A Spectrometer for Focused Hadron Flux
Measurements for LBNF?

Proposal by Laura Fields:

Detector technology is always challenging

Need to get more people interested and involved to succeed
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In-situ flux measurements
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Muon flux measurements
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Muon Flux Monitors in NuMI

From Laura Loiacono
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Tuning MC Using µ Flux Measurements

From Laura Loiacono 31 / 50
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NuMI Flux from Muon Monitors

Accurate ν flux measurements from µ monitors DIFFICULT
From Laura Loiacono
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Muon Beam Monitors in LBNF/DUNE

Layout of Muon Alcove and Shielding in LBNF

High intensity makes it difficult to measure µ spectrum accurately.
With a 2.4 MW beam, the absorber thickness is too large to sample
the lower energy muons. But these systems play an essential role in
monitoring flux stability
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Correlation between neutrino and muon spectrum

ν Spectrum Changes

Work in progress Work in progress

Work in progress Work in progress
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Correlation between neutrino and muon spectrum

µ Spectrum Changes

Work in progress Work in progress

Changes are v. small - need novel detector concepts
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Muon Monitor Technologies under R&D

Array of ionization detectors:
Measures muon beam center and
intensity. Spill by spill monitoring
of beam stability. Both diamond
and silicon under study

Threshold gas Cherenkov
detector (R&D): Uses signal
intensity at different gas pressure
and angles to extract rough
muon spectrum.

Stopped muon counters (R&D):
separate stations with steel
shielding in between could
measure muon flux at several
energies. Better measurement of
beam flux spectrum and
composition.

Gas Cherenkov counter
concept:

Prototype in NuMI beamline:

Currently only ionization detectors included in the beam design.
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Stopped Muon Concept
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Stopped Muon Prototype

Prototypes tested in NuMI beam
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Neutrino flux measurements in NDs
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Long Baseline: Near and Far ν Detectors
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Near detector neutrino flux not identical to far!
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Why a Near Detector? (LBNF example)

Uncertainty on FD flux prediction Residual uncertainty on flux at FD

2nd osc max

1st osc max
1st osc max

2nd osc max

Flux uncertainties partially cancel with near/far
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Flux Stability with High Precision Near Detector

Observe a reduction in the ν event rate < 6 GeV in NuMI target 2:

MARS simulation of target damage Target damage model in FLUKA08
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Run III last 2 months/first 2 months
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On and off-axis ν flux measurements
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MiniBooNE ν Interactions from NuMI Beamline -
2010

The NuMI simulation tuned to match the MINOS ND event rate was
used to predict the ν rate in the MiniBooNE detector:
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Off-axis ν measurements can constrain π/K production
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MiniBooNE ν Interactions from NuMI Beamline -
2010

The NuMI simulation tuned to match the MINOS ND event rate was
used to predict the ν rate in the MiniBooNE detector:
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Off-axis ν measurements can constrain π/K production
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Conclusions

Summary

Intensity frontier = precision frontier in neutrino physics.
Measurements of KNOWN parameters with accuracies ∼ 1%

New physics could be ANYWHERE L/Eν = 1 - 1000km/GeV

A full scale assault on flux measurements is needed from many
different directions:

High precision control of proton beams

External target hadron production data

Benchtop measurements of skin depth effect, horn magentic
field?

Simulate every gram of material in the beamline

Measurements of muon flux to better than 5%

REDUCING DETECTOR/CROSS-SECTION SYSTEMATICS in
near neutrino measurements.
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ν̄ →
LET THE GAMES BEGIN!

Thank you
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