Update on angular resolution measurement

Minsoo Kim (Yonsei Univ.) Dual-Readout Meeting 2021.02.24

Setup

- Measurement for three different cases
 - Between the center axes of tower0 and tower1
 - Between the center axes of tower51 and tower52
 - Between the center axes of tower75 and tower76
 - Each case is performed 6 times with different energies
 - 10, 20, 40, 60, 80 and 100 GeV electron

Deviation of *reco* from *gen*

Correction

- Since the width of the band represents the resolution, it would be much easier if the band is straight
- We can obtain p_0 , p_1 and p_2 that fit in (red line)

$$x_{gen} = p_0 x_{reco} + p_1 x_{reco}^2 \tan^{-1} p_2 x_{reco}$$

 With obtained parameters, by applying above function, the band becomes straight

Resolution

- With straightened bands, by subtracting gen value from corr, lower plots are obtained
- Lower plots represent the distribution how far corr is located from gen, i.e. resolution
- After repeating previous procedure for multiple energies, we can represent resolution in a function of energy

Resolution as a function of energy

- Fitting a straight line after plotting $\left(1/\sqrt{E}, resolution\right)$ gives the function that represents resolution in energy
- We could check that θ_{res} and ϕ_{res} gives similar values and this makes sense since the tower(module) near center of the calorimeter has similar structure in both direction
- Both shows ~0.25 mrad resolution for 100 GeV electron

$\theta_{\rm res}$ at two points

 ϕ_{res} at two points

Aim for further study

• Several parameters might be related to the resolution

tower#	Width in theta (mm)	Delta theta (rad)	angle/fiber in theta (rad)	theta res (mrad)	Width in phi (mm)	Delta phi (rad)	cos(theta) X Delta phi (rad)	angle/fiber in phi (rad)	phi res (mrad)
0	40	0.02222	0.00035	2.51/√E + 0.04	40	0.0222	0.0222007	0.00035	2.04/√E + 0.05
1	40	0.0222	0.00035		40	0.0222	0.0221897	0.00035	
51	40	0.0128	0.00027	1.16/√E + 0.03	40	0.0222	0.0129007	0.00027	2.04/√E + 0.05
52	40	0.0128	0.00027		40	0.0222	0.0126641	0.00027	
75	40	0.0128	0.00027	1.11/√E + 0.06	40	0.0222	0.00671595	0.00027	3.48/√E + 0.10
76	40	0.0128	0.00027		40	0.0222	0.00643965	0.00027	

- Seems complex relation exists
 - It might be width, an angle that a fiber occupies, distance from the vertex, etc.
- Further study is needed to know which affects the resolution

Summary

- In any case, for 100 GeV electrons, < 0.5 mrad resolution is measured
- θ_{res} gets better as it goes from barrel \rightarrow endcap
- ϕ_{res} on the other hand, exhibits opposite characteristic
 - Several factors that might affect resolution exist; width, distance, etc.
- Further study aims to investigate about the relation between the geometry and the resolution

Backup

Dual-readout calorimeter Design

- Copper-fiber dual-readout calorimeter
- Made of 92 different sized towers
- Order of 10^8 fibers in total
 - 63×63 array for 0^{th} tower, 8×48 for 91^{st} tower
 - Exploits full granularity
 - SiPM attached to every single fiber

Rear-end of the towers

Fiber arrangement inside the towers

Х

