Update on angular resolution measurement Minsoo Kim (Yonsei Univ.) Dual-Readout Meeting 2021.02.24

Setup

- Measurement for three different cases
- Between the center axes of tower0 and tower1
- Between the center axes of tower51 and tower52
- Between the center axes of tower75 and tower76
- Each case is performed 6 times with different energies
- $10,20,40,60,80$ and 100 GeV electron

Deviation of reco from gen

Correction

- Since the width of the band represents the resolution, it would be much easier if the band is straight
- We can obtain p_{0}, p_{1} and p_{2} that fit in (red line)

$$
x_{\text {gen }}=p_{0} x_{\text {reco }}+p_{1} x_{\text {reсо }}^{2} \tan ^{-1} p_{2} x_{\text {reco }}
$$

- With obtained parameters, by applying above function, the band becomes straight

Resolution

- With straightened bands, by subtracting gen value from corr, lower plots are obtained
- Lower plots represent the distribution how far corr is located from gen, i.e. resolution
- After repeating previous procedure for multiple energies, we can represent resolution in a function of energy

Resolution as a function of energy

- Fitting a straight line after plotting $(1 / \sqrt{E}$, resolution $)$ gives the function that represents resolution in energy
- We could check that $\theta_{\text {res }}$ and $\phi_{\text {res }}$ gives similar values and this makes sense since the tower(module) near center of the calorimeter has similar structure in both direction
- Both shows ~ 0.25 mrad resolution for 100 GeV electron

$\theta_{\text {res }}$ at two points

$\phi_{r e s}$ at two points

Aim for further study

- Several parameters might be related to the resolution

towert	Width in theta (mm)	Delta theta (rad)		theta res (mrad)	Width in phi (mm)	Delta hai	$\cos ($ theta) X Delta phi (rad)	$\underset{\substack{\text { anglefitiber in } \\ \text { (rac) }}}{\text { phi }}$	$\begin{aligned} & \text { phires } \\ & \text { (marac) } \end{aligned}$
0	40	0.02222	0.00035	$2.51 / \sqrt{ } \mathrm{E}+0.04$	40	0.0222	0.0222007	0.00035	$2.04 / \sqrt{ } \mathrm{E}+0.05$
1	40	0.0222	0.00035		40	0.0222	0.0221897	0.00035	
51	40	0.0128	0.00027	1.16/JE + 0.03	40	0.0222	0.0129007	0.00027	$2.04 / \sqrt{ } \mathrm{E}+0.05$
52	40	0.0128	0.00027		40	0.0222	0.0126641	0.00027	
75	40	0.0128	0.00027	1.11/JE + 0.06	40	0.0222	0.00671595	0.00027	$3.48 / \sqrt{ } \mathrm{E}+0.10$
76	40	0.0128	0.00027		40	0.0222	0.00643965	0.00027	

- Seems complex relation exists
- It might be width, an angle that a fiber occupies, distance from the vertex, etc.
- Further study is needed to know which affects the resolution

Summary

- In any case, for 100 GeV electrons, <0.5 mrad resolution is measured
- $\theta_{\text {res }}$ gets better as it goes from barrel \rightarrow endcap
- $\phi_{\text {res }}$ on the other hand, exhibits opposite characteristic
- Several factors that might affect resolution exist; width, distance, etc.
- Further study aims to investigate about the relation between the geometry and the resolution

Backup

Dual-readout calorimeter
 Design

- Copper-fiber dual-readout calorimeter
- Made of 92 different sized towers
- Order of 10^{8} fibers in total
- 63×63 array for $0^{\text {th }}$ tower, 8×48 for $91^{\text {st }}$ tower
- Exploits full granularity
- SiPM attached to every single fiber

Rear-end of the towers

Fiber arrangement inside the towers

