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Assume NP at the UV scale is flavor-blind (or flavor-minimal)


Evolve the EFT coefficients to the low-energy scale: 
due to operator mixing and the non-trivial CKM and Yukawas, 

flavor-violating low-energy operators are induced. 
 

These generate constraints on the flavor-blind UV coefficients.

Motivation

A NP sector mainly related to the 
hierarchy problem prefers a flavor-
blind structure to avoid bounds. 
 
The SM flavor puzzle is postponed 
to very high energies.


E.g. Composite Higgs, cMSSM, … 

bounds

> Main effects of NP are in the EW/Higgs sector (+top)

“Universal New Physics” scenarios


> Still, flavor bounds often are very constraining, pushing 
NP to high scales.

No signals of this class from experiments, so far.

Flavor bounds on flavor-blind NP1)
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Relax the strong assumption about the flavor blindness of NP.


Assume some flavourful NP at the high scale, 
perhaps more directly linked to the flavor problem. 

 
EFT fits should be performed with a general flavor structure.
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Figure 11: Likelihood contours in the plane of BR(B0 ! µ
+
µ
�) and BR(Bs ! µ

+
µ
�)

from the individual ATLAS, CMS, and LHCb measurements (thin contours),

our combination (thick solid contours), and the Gaussian approximation

(thick dashed contours). Also shown are the SM predictions.

10�3 and the decay constants fBs = (230.3±1.3) MeV and fB = (190.0±1.3) MeV [47])

BR(Bs ! µ
+
µ
�)SM = (3.67 ± 0.15) ⇥ 10�9

, (15)

BR(B0 ! µ
+
µ
�)SM = (1.14 ± 0.12) ⇥ 10�10

. (16)

Comparing the SM predictions with the two dimensional experimental likelihood we

get the following one-dimensional pulls3:

• if both branching ratios are SM-like, 2.3�4,

• if Bs ! µ
+
µ
� is SM-like and B

0 ! µ
+
µ
� profiled over, 1.9�,

• if B
0 ! µ

+
µ
� is SM-like and Bs ! µ

+
µ
� profiled over, 0.8�.

3
Here, the “one-dimensional pull” is �2 times the logarithm of the likelihood ratio at the SM vs. the

experimental point, after the experimental uncertainties have been convoluted with the covariance

of the SM uncertainties.

4
Converting the likelihood ratio to a pull with two degrees of freedom, we get 1.8�; this is why the

star in Fig. 11 is very close to the 2� contour.
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… could it be we are onto something here?

What is the impact on EW/Higgs/top from 
the NP required to fit these?

— Λ

— mEW

— 1 GeV

Flavorful NP

EW/h/t

RGE

+ 

CKM

“anomalies”

EW/Higgs/top from flavourful NP2)
Mainly driven by 

experimental results
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Flavor bounds on flavor-blind NP1)
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Assuming at Λ one only has:

aTGC from B and Kaon physics Bobeth and Haisch 1503.04829

form of the flavour-changing �did̄j and Zdid̄j one-loop vertices that result from the anoma-
lous TGCs. By recalculating the one-loop contributions, we identify which of the available
results are correct and which are not. Second, all earlier analyses are by now obsolete
because they all predate the precision measurements of radiative and rare B-meson decays
by BaBar, Belle and LHCb. Our study is based on the assumption that the TGCs are
the only couplings that receive non-zero initial conditions at the scale ⇤ where new physics
enters. This in particular means that we do neither allow for significant flavour-changing
down-type interactions nor modifications of the Zbb̄ couplings to occur at the new-physics
scale ⇤. Under this assumption, we show that radiative and rare B and K decays such as
B ! Xs�, Bs ! µ

+
µ
�, B ! Xs`

+
`
�, B ! K

(⇤)
µ
+
µ
�, Bs ! �µ

+
µ
�, K ! ⇡⌫⌫̄ and ✏

0
/✏

can provide constraints on two of the three TGCs that are comparable with the restrictions
arising from high-energy observations. Like in case of anomalous Ztt̄ couplings, this finding
illustrates the complementarity and synergy between indirect [25] and direct [26] searches
for physics beyond the SM.

The outline of this article is as follows. In Section 2 we discuss the three effective
interactions to be examined in this paper and review how the SM-EFT operators are related
to the TGC Lagrangian. The explicit calculations of the effects of anomalous TGCs in
quark-flavour physics and in the Z ! bb̄ pseudo observables are presented in Section 3.
Our numerical analysis is performed in Section 4, while Section 5 contains our conclusions.

2 Preliminaries

The primary goal of our work is to derive indirect constraints on the following effective
Lagrangian

LTGC =
X

i=�B,�W,3W

Ci

⇤2
Oi , (2.1)

which contains three C and P invariant dimension-6 operators. Like in [27], we write these
operators as

O�B = (Dµ�)† B̂
µ⌫ (D⌫�) ,

O�W = (Dµ�)† Ŵ
µ⌫ (D⌫�) ,

O3W = Tr
⇣
Ŵµ⌫Ŵ

⌫⇢
Ŵ

µ
⇢

⌘
,

(2.2)

where Dµ� =
�
@µ + ig

0
Bµ/2 + ig�

a
W

a
µ/2

�
� is the covariant derivative acting on the Higgs

doublet � and �
a are the usual Pauli matrices. The hatted field strength tensors are defined

as B̂µ⌫ = ig
0 (@µB⌫ � @⌫Bµ) /2 and Ŵµ⌫ = ig�

a
�
@µW

a
⌫ � @⌫W

a
µ � g✏abcW

b
µW

c
⌫

�
/2, while g

0

and g denotes the U(1)Y and SU(2)L gauge coupling, respectively. The parameter ⇤ is
the new-physics scale at which the effective operators Oi are generated by integrating out
heavy degrees of freedom. The Wilson coefficients Ci in (2.1) are hence understood to be
evaluated at ⇤. The operators introduced above represent the leading corrections to the
anomalous TGCs that do not contribute to gauge-boson propagators at tree level.1

1
Besides O�B , O�W and O3W there are other dimension-6 operators like for instance OBW = �

†
B̂µ⌫Ŵ

µ⌫
�

that modify the TGCs. In contrast to (2.2), OBW however induces a tree-level contribution to the oblique
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Figure 1. Examples of one-loop diagrams that generate a b ! s� (left) and a b ! s`
+
`
� (right)

transition. The insertions of the TGC operators are indicated by yellow circles, while the SM
vertices are represented by black dots.

of the SM-EFT operators from the new-physics scale ⇤ down to the weak scale of order mW .
This step depends crucially on the choice of initial conditions, and we assume that only
the TGC operators O�B, O�W and O3W receive non-zero Wilson coefficients at ⇤. Second,
calculation of matching corrections to the Fermi theory at the weak scale obtained by
integrating out the top quark as well as the Higgs, Z and W boson.

In the case of the b ! s�, `
+
`
� observables, one determines in this way the correc-

tions �Ci to the Wilson coefficients Ci = (Ci)SM + �Ci of the operators that enter the
effective Lagrangian of |�B| = |�S| = 1 decays

L|�B|=|�S|=1 =
4GF
p
2

V
⇤
tsVtb

�
C7Q7 + C9Q9 + C10Q10

�
+ h.c. (3.1)

Here and below the |�B| = |�S| = 1 Wilson coefficients Ci as well as �Ci (i = 7, 9, 10)
are understood to be evaluated at mW , the Fermi constant is denoted by GF and Vij

are the elements of the Cabibbo-Kobayashi-Maskawa matrix. The electromagnetic dipole,
semi-leptonic vector and axial-vector operators are defined as

Q7 =
e

(4⇡)2
mb (s̄L�↵� bR)F

↵�
,

Q9 =
e
2

(4⇡)2
(s̄L�↵bL)

�
¯̀�↵

`
�

,

Q10 =
e
2

(4⇡)2
(s̄L�↵bL)

�
¯̀�↵

�5`
�

,

(3.2)

with L, R indicating the chirality of the fermionic fields, �↵� = i [�↵, �� ] /2 and F↵� the
field strength tensor of QED. The effective Lagrangians for b ! d and s ! d transitions
are found from (3.1) and (3.2) by appropriate replacements. The current-current and QCD
penguin operators are not affected by the TGCs at the one-loop level.

The Feynman graphs that give rise to the modifications �C7, �C9 and �C10 are
depicted in Figure 1. Note that in the diagrams the contributions of all up-type quarks
have to be considered in order to obtain the correct b ! s� and b ! s`

+
`
� amplitudes. In
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Figure 3. Allowed regions in the �g
Z
1 –�� plane (upper left panel), the �g

Z
1 –�� plane (upper

right panel) and the �� –�� plane (lower panel). The red, magenta, green and grey contours
correspond to the 68% CL best fit regions following from �C7, �C9, �C10 and �g

b
L, respectively.

The dominant constraint on �C7 arises from B ! Xs�, while �C9 is bounded most strongly by
B ! K

⇤
µ

+
µ

�. The constraint �C10 is driven by the combination of B ! K
(⇤)

µ
+
µ

�, Bs ! �µ
+
µ

�

and Bs ! µ
+
µ

�. The yellow and orange contours show the 68% CL and 95% CL regions arising
from a combination of the individual constraints. All constraints employ ⇤ = 2TeV. The black
points correspond to the SM.

at 68% CL and the correlations

⇢ =

0

B@
1 �0.22 0.02

�0.22 1 0.31

0.02 0.31 1

1

CA . (4.9)

The corresponding �
2 in the SM is 104.6, while the best-fit point of the new-physics hypoth-

esis has a �
2 of 90.6. Note that (4.8) correspond to a tension between the SM predictions and

the data at the level of 3�. While further LHCb studies of B ! K
⇤
µ
+
µ
�, B

+
! K

+
µ
+
µ
�
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B → Xs γ, 
B → K*µµ, 
Bs → µµ, 
Z → bb

Explicitly, we find in the case �� = 0 (upper left panel) the following 68% CL constraints

�g
Z
1 = �0.009± 0.019 , �� = 0.00± 0.16 , (4.6)

and the correlation matrix

⇢ =

 
1 �0.06

�0.06 1

!
. (4.7)

The above numbers should be contrasted with the limits that can be derived from EW
gauge boson pair production at LEP II, the Tevatron and the LHC as well as Higgs
physics (see e.g. [2–6, 8–12]). For instance, assuming |�� | ⌧

���g
Z
1

�� , |�� |, the recent
analysis [12] of the e

+
e
�
! W

+
W

� production data collected by the LEP II experiments
obtains the model-independent 68% CL bounds �g

Z
1 = �0.06±0.03 and �� = 0.06±0.04.

We see that compared to (4.6) the LEP II limit on �g
Z
1 is slightly weaker, while in the

case of the parameter �� the LEP II constraint is clearly superior. We add that if in-
stead of ⇤ = 2TeV the value ⇤ = 1TeV (⇤ = 0.5TeV) is used in the combined fit (4.6),
one obtains �g

Z
1 = �0.012 ± 0.024 and �� = 0.00 ± 0.16 (�g

Z
1 = �0.016 ± 0.033 and

�� = 0.01±0.16). These numbers show that the bounds on �g
Z
1 and �� , when obtained

from Bs ! µ
+
µ
� and B ! Xs�, are only weakly dependent on the precise value of the

new-physics scale ⇤.
From the upper right and lower panel in Figure 2 one observes in addition that the

constraints on �� are notably less stringent than those on �g
Z
1 and �� . The reason

for this is twofold. First, only B ! Xs� is sensitive to �� and the contribution is not
logarithmically enhanced, scaling like �C7 ⇠ �� . Second, the RXs constraint (4.1) has an
approximately blind direction along �� ' 1/3�� . In consequence, our bounds on �� are
not competitive with those that derive for instance from EW gauge boson production at
LEP II, which read �� = 0.00 ± 0.07 [12]. Observe that the Rµ+µ� constraint allows in
principle for large destructive new-physics contributions that would effectively flip the sign
of the Bs ! µ

+
µ
� amplitude. This feature is illustrated by the second green band in the

upper right panel. One also sees that the corresponding ambiguity in �g
Z
1 is resolved by

Z ! bb̄. In the case of B ! Xs� a similar ambiguity exists, but it is not shown in the lower
panel, because the existing informations on b ! s`

+
`
� transitions can be used to eliminate

this possibility [46].3

The quark-flavour observables (4.1) and (4.3) that we have considered so far are only
sensitive to the shifts �C7 and �C10, but are unaffected by a possible new-physics contri-
bution �C9. In order to gain sensitivity to �C9 one has to include informations on the
b ! s`

+
`
� transitions in the global fit. The recent analysis [48] is based on 78 independent

measurements of radiative and rare b ! s observables. It finds the constraints

�C7 = �0.03± 0.03 , �C9 = �1.17± 0.40 , �C10 = 0.12± 0.27 , (4.8)

3
The latest model-independent fit that allows for all solutions finds a strong posterior preference for the

SM-like sign solution of C7, C9 and C10 of 4 to 1 compared to the sign-flipped case [47].
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Figure 2: The preferred regions at 68% and 95% CL from our combined fit to EWPO and rare

decays are shown as the dark-gray and light-gray ellipses, respectively. The colored bands show

the 68% CL constraints from the individual observables. The star denotes the SM value.

and Br(Bs ! µ+µ�). In addition, we show the region compatible with the measurements
in Table 1 at 68% and 95% CL.

We find that the branching ratio of Bs ! µ+µ� and the T parameter currently lead to
the most stringent constraints. In particular, the combination of the two leads to a strong
bound on both Wilson coe�cients C(1)

�q,33 log(µW /⇤) v2/⇤2 and C�u,33 log(µW /⇤) v2/⇤2, of
the order of a few percent. We note that t-channel single-top production leads to the bound
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2 < 0.044 (cf. Eq. (3.3)). This is weaker than the indirect bounds and

leaves C�u,33 completely unconstrained.
In the future, we expect improvements in the measurement of Br(Bs ! µ+µ�), with

a final uncertainty of ⇠ 5% [55]. In addition, various experiments plan to measure the
branching ratios of the rare K decays with high precision. The NA62 experiment at CERN
aims at a final precision of ⇠10% for the charged mode, which could be improved to ⇠3%
by an experiment at Fermilab [56]. The KOTO experiment aims at a similar precision for
the neutral mode. On the other hand, the bounds from EWPO are mainly obtained from
fits to LEP data and we do not expect any significant improvement within the next few
years. In the right panel of Fig. 2 we show our future projections. As an illustration we
assume a branching ratio measurement of all three rare decay modes with the SM central
values and a precision of 5%. We keep the current constraints from the EWPO, but note
that these bounds could be improved at future e+e� colliders [57].

The indirect constraints on the anomalous tt̄Z couplings are much stronger than the
constraints from direct searches, i.e. from tt̄ + Z production, even after a high-luminosity
upgrade of the LHC. For instance, the authors of Ref. [3] give the bounds �0.04 <
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This will induce a shift in the Z coupling to electrons, defined by

�ge

L
= �

v2

2⇤2

�
C(3)

�l,11 + C(1)
�l,11

�
. (3.10)

Solving Eq. (3.9) we find

�ge

L
= �

v2

⇤2

↵

4⇡s2
w

C(3)
�q,33(⇤) log

µW

⇤
. (3.11)

Comparing with LEP data [31] we see that the resulting bound on C(3)
�q,33 is weaker than

that from �gb

L
and we do not consider this constraint further. Similar considerations apply

also for the corresponding µ and ⌧ couplings. A more comprehensive analysis taking all of
these e↵ects into account might be worthwhile.

3.3 Rare meson decays

We now advocate the use of rare meson decays to constrain anomalous tt̄Z couplings.
Recall that in this work we assume C(3)

�q,33 + C(1)
�q,33 = 0, and thus the absence of tree-level

FCNC transitions at the scale ⇤. Operator mixing reintroduces these transitions at lower
scales. We calculate the running of the Wilson coe�cients from ⇤ to the electroweak scale,
where we match onto the five-flavor e↵ective theory. We then compute the modifications of
the rare meson decay rates, which allows us to bound the Wilson coe�cients at the scale ⇤.
We focus here on the processes B(s,d) ! µ+µ� and K ! ⇡⌫⌫̄. The reason is that all these
decays are dominated by the Z-penguin within the SM and are thus the best candidates
to constrain anomalous tt̄Z couplings.

The part of the RGE relevant for the rare meson decays is the same as in Eq. (3.4),
with the addition

µ
d

dµ
C(3)

lq
= �

g2
2

16⇡2

1

3
C(3)

�q,33 , µ
d

dµ
C(1)

lq
=

g2
1

16⇡2

1

3
C(1)

�q,33 . (3.12)

As a non-trivial check of our calculation we reproduce the logarithmic part of the loop func-
tions f (j)

⌫⌫̄ given in Ref. [9]. Solving the equations (3.12), we find the following expressions
for the Wilson coe�cients at the electroweak scale:

C(3)
lq

(µW ) = C(3)
lq

(⇤) +
1

3
C(3)

�q,33(⇤)
g2
2

16⇡2
log

µW

⇤
,

C(1)
lq

(µW ) = C(1)
lq

(⇤) �
1

3
C(1)

�q,33(⇤)
g2
1

16⇡2
log

µW

⇤
.

(3.13)

The other relevant Wilson coe�cients are given in Eq. (3.5). Note, however, that now some
of the contributions to the FCNC transitions in Eq. (3.5) cancel because of the unitarity

of the CKM matrix. In particular, C(1)
�q,ii

and C(3)
�q,ii

for i = 1, 2 do not appear in the final
expressions.
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complete set of such operators is given by (cf. [10, 11]):

Q(3)
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$
Da

µ
�)(Q̄L,3�

µ�aQL,3) ,

Q(1)
�q,33 ⌘ (�†i

$
Dµ �)(Q̄L,3�

µQL,3) ,

Q�u,33 ⌘ (�†i
$
Dµ �)(t̄R�µtR) .

(2.2)

These operators contain the Higgs doublet �, the left-handed third-generation quark dou-
blet QL,3, and the right-handed top quark tR. Moreover, �a are the Pauli matrices and Dµ

is the SM gauge-covariant derivative and we defined

(�†i
$
Dµ �) = i�†�Dµ�

�
� i

�
Dµ�

�†
� ,

(�†i
$
Da

µ
�) = i�†�a

�
Dµ�

�
� i

�
Dµ�

�†
�a� ,

(2.3)

so that the operators are manifestly Hermitian. Therefore, all Wilson coe�cients consid-
ered in this work are real.

In order to include in Eq. (2.2) all operators that induce tt̄Z at tree-level, we have
chosen the basis in which the up-type quark Yukawa matrix is diagonal. Accordingly, we
have

QL,3 ⌘


tLP

j
V3jdL,j

�
. (2.4)

The fields tL(R), dL,j are mass eigenstates and V is the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. A generic NP model can generate FCNC transitions in the up-quark
sector; to take these e↵ects into account we have to consider additional operators involving
the first and second quark generation. However, in the restricted, but phenomenologi-
cally well-motivated, framework of MFV [12] these operators are suppressed with respect
to those in Eq. (2.2) by elements of the CKM matrix. Thus, the resulting bounds on
tt̄Z couplings are negligible. Moreover, in the limit that only the top-quark Yukawa is
non-vanishing in the MFV spurion counting, such additional operators are absent. For
simplicity, we will use this approximation in the following, but we will comment on the
e↵ect of keeping a large bottom-quark Yukawa in Sec. 4. This discussion will cover MFV
models with down-type quark alignment, i.e. models in which, at tree-level, only up-type
quark FCNCs are generated by NP.

In our analysis, only the operators in Eq. (2.2) receive non-zero initial conditions at
the scale ⇤. However, electroweak corrections and corrections involving the SM top-quark
Yukawa coupling yt will induce mixing into the following additional operators relevant for
our analysis:

Q(3)
�q,ii

⌘ (�†i
$
Da

µ
�)(Q̄L,i�

µ�aQL,i) ,

Q(1)
�q,ii

⌘ (�†i
$
Dµ �)(Q̄L,i�

µQL,i) ,

Q(3)
lq,33jj

⌘ (Q̄L,3�µ�
aQL,3)(L̄L,j�

µ�aLL,j) ,

Q(1)
lq,33jj

⌘ (Q̄L,3�µQL,3)(L̄L,j�
µLL,j) ,

Q�D ⌘
���†Dµ�

��2 ,

(2.5)
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Observable Value Ref.

T 0.08 ± 0.07 [14]
�gb

L
0.0016 ± 0.0015 [14]

Br(Bs ! µ+µ�) [CMS] (3.0+1.0
�0.9) ⇥ 10�9 [32]

Br(Bs ! µ+µ�) [LHCb] (2.9+1.1
�1.0) ⇥ 10�9 [33]

Br(K+
! ⇡+⌫⌫̄) (1.73+1.15

�1.05) ⇥ 10�10 [54]

Table 1: Numerical input values for our fit.

Again, the hadronic matrix element can be extracted from the Kl3 decays, parametrized
here by L [49].

As in the Bq ! µ+µ� decays, we include all NP e↵ects as additional contributions
to the SM top-quark function Xt = XSM

t
+ �XNP. At the order we consider, all NP

e↵ects originate from the modifications of the tt̄Z coupling. Thus, these are the same for
Bq ! µ+µ� and K ! ⇡⌫⌫̄ decays

�Y NP = �XNP =
xt

8

✓
C�u �

12 + 8xt

xt

C(1)
�q,33

◆
v2

⇤2
log

µW

⇤
, (3.17)

where xt = m2
t
/M2

W
and we used again the relation C(3)

�q,33 = �C(1)
�q,33 at the scale ⇤.

We conclude this section by comparing our work to existing results in the literature.
Rare meson decays have been used to constrain FCNC Zqt couplings, where q = u, c,
in Ref. [6, 7], and to constrain anomalous Wtb couplings in Ref. [9]. The corrections to
the Wilson coe�cients presented in the above publications amount to one-loop threshold
corrections at the electroweak scale. These corrections are scheme dependent [52, 53];
the scheme dependence would cancel only when performing the two-loop running of the
Wilson coe�cients in the e↵ective theory above the electroweak scale. On the other hand,
the logarithmic dependence of the corrections on the scale ⇤ is scheme independent (since
the leading-order anomalous dimensions are scheme independent). By e↵ectively choosing
a questionably low matching scale, of the order of the W -boson mass, these terms are
rendered numerically insignificant in the above articles.

4 Numerics and discussion

In this section we present the constraints on anomalous tt̄Z couplings derived from the
observables discussed above. We show the individual constraints and perform a combined
fit using current experimental data. In addition, we show the impact of future precision
measurements of the rare B and K decay branching ratios.

Our main results are summarized in Fig. 2. In the left panel we show the individual 68%
CL regions resulting from the measurement of the T parameter, �gb

L
, Br(K+

! ⇡+⌫⌫̄),
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The effect comes from modification of Ztt, 
same for B (δYNP) and K (δXNP) decays:

v2/⇤2 C(1)
�q,33 < 0.19 and �0.13 < v2/⇤2 C�u,33 < 0.32, assuming 3000 fb�1 of data. How-

ever, one has to keep in mind that indirect constraints rely on a set of assumptions. In
this work we assumed i) only C(3)

�q,33, C(1)
�q,33, and C�u,33 receive non-zero initial conditions

at the scale ⇤; ii) C(3)
�q,33 + C(1)

�q,33 = 0 at ⇤; iii) only the top-quark Yukawa coupling is
non-vanishing.

Assumption i) is compatible only with NP models with non-trivial flavor structure,
while assumption ii) can be motivated by explicit models [15]. A simple way to deviate
from assumption iii) is to consider models with a large enhancement of the bottom-quark
Yukawa coupling; a generic example is a two Higgs-doublet model with large tan�. The
large bottom-Yukawa coupling will induce flavor o↵-diagonal versions of the operators in
Eq. (2.2) and Eq. (2.5), via the MFV counting. These o↵-diagonal operators lead to
additional contributions to FCNC top decays and D0

�D0 mixing. In order to relate these
observables to tt̄Z couplings, we assume MFV. Thus the resulting constraints on anomalous
tt̄Z couplings are suppressed by CKM-matrix elements. As an illustrative example consider
an extreme case where the bottom-Yukawa coupling is much larger than the top-Yukawa
coupling. In this case, we have C(3)

�q,23 ⇠ �2C(3)
�q,33 etc., where � ⌘ |Vus| ⇡ 0.22 is the

Wolfenstein parameter. Then D0
� D0 mixing is suppressed by �10

⇡ 10�7 and thus
completely negligible. Also, the branching ratio for t ! cZ is

Br(t ! cZ) '
�4v4

⇤4

⇣
C(3)

�q,33 � C(1)
�q,33

⌘2

+ C2
�u,33

�
. (4.1)

Using the present bound Br(t ! cZ) < 0.05% given by the CMS collaboration [58] we see
that the resulting bounds are not competitive with bounds from EWPO and rare B/K
decays.

Note that the o↵-diagonal operators will also lead to additional contributions to rare
B/K decays and anomalous bb̄Z couplings. The generalization of our assumption ii) can
be used to eliminate such contribution from these o↵-diagonal operators [15].

More generally, all rare decays in the down sector which receive a Z-penguin contribu-
tion can be used to obtain bounds on anomalous tt̄Z couplings with our method. Suitable
decays which will be measured in the future include Bd ! µ+µ� [59] and B ! K⌫⌫̄ [60].
It would be interesting to allow for complex Wilson coe�cients of the operators in Eq. (2.2)
and study their e↵ect on CP violation in rare meson decays.

To conclude, in this work we studied the e↵ects of dimension-six operators, generating
anomalous vector and axial-vector tt̄Z couplings at tree-level, on precision observables. In
particular, we advocate the use of rare K and B meson decays to obtain strong constraints
on tt̄Z couplings.
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the electroweak scale µW . Using Eq. (2.8), we find

�gb

L
= �

v2

2⇤2

↵

4⇡

⇢
V ⇤

33V33


xt

2s2
w

⇣
8C(1)

�q,33(⇤) � C�u(⇤)
⌘

+
17c2

w
+ s2

w

3s2
w
c2
w

C(1)
�q,33(⇤)

�

+


2s2

w
� 18c2

w

9s2
w
c2
w

C(1)
�q,33(⇤) +

4

9c2
w

C�u(⇤)

��
log

µW

⇤
.

(3.6)

Here, we defined xt ⌘ m2
t
/M2

W
and used the relation C(3)

�q,33(⇤) + C(1)
�q,33(⇤) = 0.

The above corrections lead to a shift in the parameter ✏b, defined in Ref. [20], given by
�✏b = �gb

L
. The authors of Ref. [3] have compared their direct constraints on anomalous

tt̄Z couplings with the indirect constraint derived from �✏b. They use the expression for
�✏b given in Ref. [21] while using the same e↵ective operators as in our work. However,
the calculation in Ref. [21] has been carried out in a di↵erent framework, namely, the non-
linearly realized electroweak chiral Lagrangian [22]. Their result therefore does not agree
with ours, and the expression for �✏b in Ref. [3] should be replaced by the one in Eq. (3.6).

Quantum corrections also induce the mixing of the operators in Eq. (2.2) into Q�D in
Eq. (2.5). This operator is tightly constrained by EWPO, since it leads to the universal
oblique T parameter [23–25]. The mixing is given by [18, 19]

16⇡2µ
d

dµ
C�D =

8

3
g2
1

⇣
C(1)

�q,33 + 2C�u,33

⌘
+ 24y2

t

⇣
C(1)

�q,33 � C�u,33

⌘
. (3.7)

Accordingly, we obtain the following expression for the T parameter (cf. Ref. [26])

T = �
v2

2↵⇤2
C�D

= �
v2

⇤2


1

3⇡c2
w

⇣
C(1)

�q,33 + 2C�u,33

⌘
+

3xt

2⇡s2
w

⇣
C(1)

�q,33 � C�u,33

⌘�
log

µW

⇤
.

(3.8)

We checked that the T parameter obtained via the above RGE analysis agrees with a direct
computation of the vacuum-polarization diagrams.

The T parameter is directly related to the quantity ✏1, defined in Ref. [27], via ✏1 ⌘ ↵T .
The term proportional to xt in Eq. (3.8) can be deduced from the corresponding result for
�✏1 in Ref. [28]; we agree with that result. However, our result disagrees with that quoted in
Ref. [3], where the contributions from the modified charged current have not been included.

Note that there are no contributions to the S parameter within our setup because the
operators in Eq.(2.2) do not mix into Q�WB ⌘ (�†�a�)W a

µ⌫
Bµ⌫ . Vertex corrections could,

however, lead to an indirect contribution to S (see e.g. Ref. [29]). This is illustrated, for
instance, by the correlation of �✏3 and �✏b [30]. We neglect these e↵ects for simplicity.

On the other hand, the operators in Eq.(2.2) mix into Q(3)
�l,11 ⌘ (�†i

$
Da

µ
�)(L̄L,1�µ�aLL,1)

according to

µ
d

dµ
C(3)

�l,11 = 2
g2
2

16⇡2
C(3)

�q,33 . (3.9)

7
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Figure 2. Diagrams generating contributions to Bs mixing from the SMEFT operators Q(1)
qq and

Q(3)
qq .

4.1 Q(1)
qq

and Q(3)
qq

These are the only operators in our theory which generate a contribution to the b ! s

transition at tree level, shown in Fig. 1. As mentioned in Sec. 2, there are two ways of

contracting the quark doublets to make a flavour singlet in both operators, so we can define

four independent Wilson coe�cients, C(3)
qq , C(3)0

qq , C(1)
qq and C(1)0

qq , within our U(3)5 invariant

theory.

The contribution to the coe�cients of the 4-quark WET operators O1 and O2 is

C1 = v2(C(3)0
qq � C(1)0

qq ), (4.1)

C2 = �2v2C(3)
qq . (4.2)

Contributions to C9 and C10 are generated by the second diagram of Fig. 1. We find

C9 = �v2C(3)
qq

✓
8

9
+

xt
2

1� 4s2
✓

s2
✓

◆✓
1 + log

m2
t

µ2

◆

+ v2Nc(C
(3)0
qq � C(1)0

qq )

✓
4

9
+

xt
4

1� 4s2
✓

s2
✓

◆
log

m2
t

µ2
, (4.3)

C10 =
1

2

1

s2
✓

v2C(3)
qq xt

✓
1 + log

m2
t

µ2

◆
� Nc

4

1

s2
✓

v2(C(3)0
qq � C(1)0

qq )xt log
m2

t

µ2
. (4.4)

where Nc = 3 is the number of QCD colours. These operators also generate contributions

to Bs mixing from the diagrams in Fig. 2. These give

Cs

1,mix(xt) = �v2
⇣
2C(3)

qq + (C(1)0
qq � C(3)0

qq )
⌘
xt, (4.5)

Cs

1,mix(xc) = �v2
⇣
2C(3)

qq + (C(1)0
qq � C(3)0

qq )
⌘
xc, (4.6)

Cs

1,mix(xt, xc) = v2
⇣
2C(3)

qq + (C(1)0
qq � C(3)0

qq )
⌘
xc log

xc
xt

. (4.7)

4.2 Q
(1)
lq

, Q
(3)
lq

, Qeu, Qlu and Qqe

These four-fermion operators contribute to b ! sl+l� processes via the diagrams shown in

Fig. 3. The contributions are

C9 =
v2

s2
✓

(Ceu + Clu � C(1)
lq

� Cqe)I(xt)�
v2

s2
✓

C(3)
lq

I lq(xt), (4.8)

C10 =
v2

s2
✓

(Ceu � Clu + C(1)
lq

� Cqe)I(xt) +
v2

s2
✓

C(3)
lq

I lq(xt), (4.9)
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Figure 2: Diagram showing which Warsaw basis Wilson coe�cients a↵ect each of the

types of observables included in the fit

predictions for the observables can be written as a matrix equation

µ (✓) = µSM +H · ✓, (4.1)

where µ is the vector of predictions, µSM represents the SM predictions, ✓ is a vector of

SMEFT Wilson coe�cients, and H is a matrix of functions that parameterise the SMEFT

corrections. The measured central values of the observables can be represented by a vector

y, with a covariance matrix V. Then the �2 function is

�2(✓) = (y � µ (✓))T V�1 (y � µ (✓)) . (4.2)

The least-squares estimators ✓̂ for the Wilson coe�cients are found by minimising �2:

✓̂ =
�
HTV�1H

��1
HTV�1y. (4.3)

The covariance matrix U for the least squares estimators is given by the inverse of the

Fisher matrix F, defined as

F = HTV�1H = U�1. (4.4)

When the covariance matrix is diagonalised, its entries are the variances �2
i
of its eigen-

vectors, which are a set of linearly independent directions in Wilson coe�cient space. The

eigenvalues of the Fisher matrix are therefore 1/�2
i
. If an eigenvector direction is uncon-

strained by the data, its corresponding Fisher matrix eigenvalue will be zero.

– 19 –

Figure 1. Diagrams generating contributions to the 4-quark WET coe�cients C1,2 (left) and to

b ! sl+l� (right) from the SMEFT operators Q(1)
qq and Q(3)

qq .

The WET e↵ective Hamiltonian for �B = �S = 2 transitions is again identical to the

WET basis of the SM,

H|�B|=|�S|=2
e↵ =

Ĝ2
F
m̂2

W

16⇡2
(s̄↵L�

µb↵L) (s̄
�

L
�µb�

L
)

⇥
�
�2
t C

s

1,mix(xt) + �2
c C

s

1,mix(xc) + 2�c�tC
s

1,mix(xt, xc)
�
, (3.10)

where ↵ and � are colour indices, and �i = V̂ ⇤
is
V̂ib. The coe�cients Cs

1,mix
are functions

of xi = m2
i
/m2

W
, and only the first term �2

t C
s

1,mix
(xt) is non-negligible in the case of Bs

(and Bd) mixing. However we include the functions Cs

1,mix
(xc) and Cs

1,mix
(xt, xc) here –

and quote their values (to linear order in xc ⌧ 1) in the main text – to allow application

of our matching results via trivial flavour index replacements to kaon mixing, where these

terms are important.

4 Results

In this section we present our results for the matching of the U(3)5 flavour and CP sym-

metric SMEFT theory onto the coe�cients of the WET. All WET Wilson coe�cients are

at the electroweak scale mW . We define Wilson coe�cients in the SMEFT at the arbitrary

scale µ and do not resum the logarithmic divergences of form log
⇣

µ

mW

⌘
, leaving them

explicit in our calculation for comparison with the anomalous dimension matrix of [10–12],

with which we find agreement. We separate our results by SMEFT operator, or groups of

similar operators, and we only present non-zero results. Our calculations have been done

in R⇠ gauge using dimensional regularisation and we use the MS prescription to remove

divergences. In all cases we have confirmed that the separate contributions calculated here

are gauge parameter independent. Where possible, we compare our results to those ob-

tained previously in the literature. In all diagrams, orange blobs represent insertions of

SMEFT operators, and unlabelled internal fermion lines are u/c/t quarks.

To first order in 1/⇤2, the barred and hatted parameters (e.g. ḡ1, ĝ1 as introduced

in Sec. 3) are equal when they are multiplied by a SMEFT Wilson coe�cient, so in the

following we simply drop the hats and bars for simplicity. However we emphasise that

the results presented here include the e↵ects of input parameter shifts, and we are taking

{mW ,mZ , GF } as the set of electroweak input parameters, as explained in Sec. 3.

– 9 –

Figure 3. Diagrams generating contributions to b ! sl+l� from Qeu and Qlu (first two diagrams
only), Q(1)

lq
and Qqe (first three diagrams and similar) and Q(3)

lq
(all four diagrams and similar).

Figure 4. Diagrams generating contributions to b ! sl+l� from Q(1)
Hl

and QHe operators. The
fourth diagram should be taken to include all other Z penguin diagrams (including those with
self-energies on external legs) where these operators a↵ect the Zl+l� vertex.

where

I(xt) =
xt
16


� log

m2
W

µ2
+

xt � 7

2(1� xt)
� x2t � 2xt + 4

(1� xt)2
log xt

�
, (4.10)

I lq(xt) =
xt
16


� log

m2
W

µ2
+

1� 7xt
2(1� xt)

� x2t � 2xt + 4

(1� xt)2
log xt

�
. (4.11)

Our results for Ceu and Clu are in agreement with Ref. [43].

4.3 Q
(1)
Hl

and QHe

These operators produce e↵ects in b ! sl+l� via the diagrams shown in Fig. 4, giving

C9 = �v2

s2
✓

⇣
C(1)
Hl

+ CHe

⌘
I(xt), (4.12)

C10 =
v2

s2
✓

⇣
C(1)
Hl

� CHe

⌘
I(xt), (4.13)

where I(xt) is defined in Eqn. (4.10).

4.4 Q
(1)
Hq

and QHu

These operators e↵ectively just change the Zūiui coupling and hence only enter in the Z

penguin diagrams shown in Fig. 5. The contributions are

C9 = v2
(1� 4s2

✓
)

s2
✓

⇣
CHu � C(1)

Hq

⌘
I(xt), (4.14)

C10 =
v2

s2
✓

⇣
CHu � C(1)

Hq

⌘
I(xt), (4.15)

where I(xt) is defined in Eqn. (4.10). The CHu result is in agreement with Ref. [43].
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Figure 6: Constraints (at 95% confidence level) obtained when allowing only one Warsaw

basis operator to be non-zero at a time. In black are the bounds from the fit not including

flavour data, and in orange are the bounds from the fit including flavour data. Note the

di↵erent normalisations of the coe�cients along the x-axis; this was done for presentation

purposes.

5 Discussion

Our results demonstrate that flavour can add meaningful information to global fits assum-

ing a symmetric flavour structure at lowest order in the Yukawas. We have shown that

flavour measurements should not be thought of as only constraining flavour-breaking op-

erators, but rather, depending on the flavour structure of the underlying theory, they can

be used to help constrain flavour-conserving or bosonic operators. We find that e↵ects in

flavour can be significant even in theories where they are often neglected.

The U(3)5 flavour symmetry we have studied is the largest flavour symmetry group

available for BSM physics, and it is reasonable to broadly assume that any breaking of

this symmetry will only enhance e↵ects in flavour. In this sense, our findings may be

taken as conservative bounds from flavour on generic new physics. However, the specific

Wilson coe�cient combinations that can be constrained by flavour data clearly depend

rather strongly, both in their number and direction, on the flavour assumptions imposed

at the scale ⇤. Hence, the results of our analysis cannot directly be extrapolated to other

flavour scenarios which may be of interest, however we make a few comments here.

If a flavour assumption forbids tree-level FCNCs (this is true, for example, of an un-
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basis operator to be non-zero at a time. In black are the bounds from the fit not including

flavour data, and in orange are the bounds from the fit including flavour data. Note the

di↵erent normalisations of the coe�cients along the x-axis; this was done for presentation

purposes.

5 Discussion

Our results demonstrate that flavour can add meaningful information to global fits assum-

ing a symmetric flavour structure at lowest order in the Yukawas. We have shown that

flavour measurements should not be thought of as only constraining flavour-breaking op-

erators, but rather, depending on the flavour structure of the underlying theory, they can

be used to help constrain flavour-conserving or bosonic operators. We find that e↵ects in

flavour can be significant even in theories where they are often neglected.

The U(3)5 flavour symmetry we have studied is the largest flavour symmetry group

available for BSM physics, and it is reasonable to broadly assume that any breaking of

this symmetry will only enhance e↵ects in flavour. In this sense, our findings may be

taken as conservative bounds from flavour on generic new physics. However, the specific

Wilson coe�cient combinations that can be constrained by flavour data clearly depend

rather strongly, both in their number and direction, on the flavour assumptions imposed

at the scale ⇤. Hence, the results of our analysis cannot directly be extrapolated to other

flavour scenarios which may be of interest, however we make a few comments here.

If a flavour assumption forbids tree-level FCNCs (this is true, for example, of an un-
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With flavor data

Aoude, Hurth, Renner, Shepherd 1903.00500 (tree + 1-loop matching to LEFT [Dekens, Stoffer 1908.05295]), 2003.05432 (fit)



8

2) EW/Higgs/top from flavourful NP



9

Assuming at Λ one only has:

Zℓℓ from R(D(*))

0.2 0.3 0.4 0.5
R(D)

0.2

0.25

0.3

0.35

0.4R
(D

*)

HFLAV average

Average of SM predictions

 = 1.0 contours2χΔ

 0.003±R(D) = 0.299 
 0.005±R(D*) = 0.258 

HFLAV

Winter 2019

) = 27%2χP(

σ3

LHCb15

LHCb18

Belle17

Belle19 Belle15

BaBar12

HFLAV
Spring 2019

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

!
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

!
αβ and

follows from the assumed U(2)q × U(2)! flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

V!, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume V! ≡ (0, V ∗
τµ) with |Vτµ| % 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
%αL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)! flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λ!

µµ (and, to a minor extent, also to λ!
τµ). By construction,

λq
bb = λ!

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)! singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

!
µµ, and λ!

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λ!

τµ = O(|Vτµ|) , λ!
µµ = O(|Vτµ|2) . (2.3)
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left-handed fields is
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V ∗
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A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)! flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λ!

µµ (and, to a minor extent, also to λ!
τµ). By construction,

λq
bb = λ!

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)! singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

!
µµ, and λ!

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λ!

τµ = O(|Vτµ|) , λ!
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3. A particularly restrictive scenario, that can be implemented both in the case of LQ or

colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that

there exists a flavour basis where the NP interaction is completely aligned along the

flavour singlets. For both mediators, in this specific limit one arrives to the prediction

λ!
µµ > 0.

In order to reduce the number of free parameters, in eq. (2.1) we assume the same

flavour structure for the two operators. This condition is realised in specific simplified

models, but it does not hold in general. The consequences of relaxing this assumption are

discussed in section 3 in the context of specific examples. Finally, motivated by the absence

of deviations from the SM in CP-violating observables, we assume all the complex phases,

except the CKM phase contained in the Vq spurion, to vanish (as shown in appendix A,

this implies λq
bs = λq

sb and λ!
τµ = λ!

µτ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies,

we perform a fit to low-energy data with four free parameters: CT , CS , λ
q
sb, and λ!

µµ, while

for simplicity we set λ!
τµ = 0.1 The set of experimental measurements entering the fit,

together with their functional dependence on the fit parameters, is discussed in length in

appendix B. In particular, we take into account the LFU tests in the charged-current semi-

leptonic observables Rτ!
D(∗) and Rµe

b→c, global fits of b → sµµ processes (including the LFU

ratios Rµe
K(∗) and the angular observables) along the direction ∆Cµ

9 = −∆Cµ
10 [36–42], and

limits on B(B → K∗νν̄) [43]. We also include a set of observables sensitive to the purely-

leptonic and electroweak operators generated by the renormalisation-group running of the

semi-leptonic operators from the scale Λ down to the electroweak scale. The most notable

effects are the corrections to the Z → τ τ̄ effective couplings, to the invisible Z decay width,

and to the LFU (Rτ!
τ ) and LFV (τ → 3µ) tests in τ decays [34, 35]. The matching scale

is set to Λ = 2TeV in the fit. The results change only slightly using Λ = 1TeV instead,

relaxing the impact of the loop-induced constraints. The observables considered in the

fit are summarised in table 1, together with their approximate dependence on the EFT

parameters. In order to fulfil the condition in eq. (2.3) we impose |λq
sb| < 5|Vcb|.

We minimise the total χ2 function to find the best-fit point and the corresponding

confidence level intervals. The result are presented as 2D plots after marginalising over the

other two parameters (see figure 1). The main observations can be summarised as follows.

1. Because of radiative constraints, the fit favours sizeable values of λq
sb/V

∗
ts ≈ −λq

sb/Vcb,

which allow to lower the value of CT,S (i.e. to increase the scale of NP) keeping

fixed the contribution to Rτ!
D(∗) (see the bottom-right panel of figure 1). This can

be understood from the approximated expression for Rτ!
D(∗) (see appendix B for the

exact formula used in the numerical fit),

Rτ!
D(∗) ≈ 1 + 2CT

(
1− λq

sb

V ∗
tb

V ∗
ts

)
= 1.237± 0.053 , (2.4)

1We explicitly verified that a nonzero λτµ has no impact on the fit results.
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Left-handed Zττ and Zνν couplings. One-loop correction to Z couplings with the

left-handed τ lepton and neutrinos due to the RG evolution of the semi-leptonic operators

is [35]

δgZτL =
1

16π2

(
3y2t (CT − CS)Lt − g2CTLz −

g21
3
CSLz

)
≈ −0.043CS + 0.033CT ,

δgZνL =
1

16π2

(
3y2t (−CT − CS)Lt + g2CTLz −

g21
3
CSLz

)
≈ −0.043CS − 0.033CT ,

(B.16)

where Lt,z = logΛ/mt,z and we fixed Λ = 2TeV and yMS
t (mt) ≈ 0.94. Neglecting the small

correlations reported in table 7.7 of [73], we find

δgZτL = −0.0002± 0.0006 , (B.17)

taking s2W = 0.23126 [71]. A modified Z coupling to τ -neutrino impacts the invisible Z

decay reported as the number of neutrinos [73], Nν = 3+4δgZνL = 2.9840±0.0082, providing

δgZνL = −0.0040± 0.0021 . (B.18)

LFU in τ decays (radiative). One-loop corrections modify W couplings to τ lepton

which are tested at the per-mil level in τ decays [74]. Combining the limits on LFU ratios

shown in ref. [74] we get

|gWτ /gWµ | = 0.9995± 0.0013 , |gWτ /gWe | = 1.0030± 0.0015 . (B.19)

If gWµ = gWe ≡ gW# , then one has

|gWτ /gW# | = 1.00097± 0.00098 . (B.20)

Radiative corrections contribute to this ratio as [34]

|gWτ /gW# | = 1− 6y2t
16π2

CT log
Λ

mt
≈ 1− 0.084CT , (B.21)

where we fixed Λ = 2TeV.

LFV in τ decays (radiative). Renormalisation group effects from the semi-leptonic

operators also generate LFV Zτµ couplings. The main effect, proportional to y2t , is given

by [34, 35]

δgZτµL = − 3y2t
16π2

(CS − CT )λ
#
τµ log

Λ

mt
. (B.22)

At low energy, this induces LFV τ decays such as:

B(τ → 3µ)

B(τ → µνν)
=
[
2
(
−2(gZµL)

SMδgZτµL
)2

+
(
−2(gZµR)

SMδgZτµL
)2]

, (B.23)

where (gZµL)
SM = −1/2+ s2θW and (gZµR)

SM = s2θW . Using B(τ → µνν) ≈ 17.4% and a scale

Λ = 2TeV one obtains

B(τ → 3µ) ≈ 2.5× 10−4(CS − CT )
2(λ#

τµ)
2 < 1.2× 10−8 . (B.24)

While this is vanishing in the vector leptoquark model, in the case of the scalar leptoquarks

the expression is obtained simply by substituting CS − CT = 2(C1 + C3) and λ#
τµ = βbµ.
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the decay amplitude of the Z boson into a lepton pair, the contribution from the e↵ective
Lagrangian LW,Z , which is formally a tree-level term, should be combined with that of the
one-loop diagram arising from the four-fermion interactions contained in L

NP , with the Z

boson on the mass-shell attached to the quark legs, as shown in fig. 1.

Figure 1: Diagrams contributing to the decay of the Z into a lepton pair. On the left, the
contribution from LW,Z , eq. (20). On the right the one-loop contribution originating from the
four-fermion interactions contained in L

0
NP

(⇤), eq. (7), denoted by a square. The dependence on
the renormalization scale µ cancels in the sum.

This has the e↵ect of replacing the couplings of eq. (23) with

gfL,R = g
SM

fL,R
+ �gfL,R (f = ⌫, e) , (28)

where
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and
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, (30)

where Ii (i = 1, 2, 3) are finite and renormalization scale independent quantities defined as

I1 =

Z 1

0

dx log
m

2
t
�m

2
Z
x(1� x)

m2
Z

, (31)

I2 =

Z 1

0

dx x(1� x) log
m

2
t
�m

2
Z
x(1� x)

m2
Z

, (32)

I3 =

Z 1

0

dx x(1� x) log[x(x� 1)] . (33)

Starting from the above expressions, we find the following approximate results

�g
ij

⌫L
⇡

10�3

⇤2
{(2.1+1.1 log⇤)�u

33(C1+C3)� 0.52C3 � i[0.11�u

33(C1+C3)� 0.25C3]}�
e

ij
,

9

per-mille constraints by LEP-I

A too large value of CS,T is excluded by 1-loop contribution to Z → ττ, νν via RGE-mixing:

This effect is not described by the oblique parameters S&T >> The flavourful LEP fit is required.
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Left-handed Zττ and Zνν couplings. One-loop correction to Z couplings with the

left-handed τ lepton and neutrinos due to the RG evolution of the semi-leptonic operators

is [35]

δgZτL =
1

16π2

(
3y2t (CT − CS)Lt − g2CTLz −

g21
3
CSLz

)
≈ −0.043CS + 0.033CT ,

δgZνL =
1

16π2

(
3y2t (−CT − CS)Lt + g2CTLz −

g21
3
CSLz

)
≈ −0.043CS − 0.033CT ,

(B.16)

where Lt,z = logΛ/mt,z and we fixed Λ = 2TeV and yMS
t (mt) ≈ 0.94. Neglecting the small

correlations reported in table 7.7 of [73], we find

δgZτL = −0.0002± 0.0006 , (B.17)

taking s2W = 0.23126 [71]. A modified Z coupling to τ -neutrino impacts the invisible Z

decay reported as the number of neutrinos [73], Nν = 3+4δgZνL = 2.9840±0.0082, providing

δgZνL = −0.0040± 0.0021 . (B.18)

LFU in τ decays (radiative). One-loop corrections modify W couplings to τ lepton

which are tested at the per-mil level in τ decays [74]. Combining the limits on LFU ratios

shown in ref. [74] we get

|gWτ /gWµ | = 0.9995± 0.0013 , |gWτ /gWe | = 1.0030± 0.0015 . (B.19)

If gWµ = gWe ≡ gW# , then one has

|gWτ /gW# | = 1.00097± 0.00098 . (B.20)

Radiative corrections contribute to this ratio as [34]

|gWτ /gW# | = 1− 6y2t
16π2

CT log
Λ

mt
≈ 1− 0.084CT , (B.21)

where we fixed Λ = 2TeV.

LFV in τ decays (radiative). Renormalisation group effects from the semi-leptonic

operators also generate LFV Zτµ couplings. The main effect, proportional to y2t , is given

by [34, 35]

δgZτµL = − 3y2t
16π2

(CS − CT )λ
#
τµ log

Λ

mt
. (B.22)

At low energy, this induces LFV τ decays such as:

B(τ → 3µ)

B(τ → µνν)
=
[
2
(
−2(gZµL)

SMδgZτµL
)2

+
(
−2(gZµR)

SMδgZτµL
)2]

, (B.23)

where (gZµL)
SM = −1/2+ s2θW and (gZµR)

SM = s2θW . Using B(τ → µνν) ≈ 17.4% and a scale

Λ = 2TeV one obtains

B(τ → 3µ) ≈ 2.5× 10−4(CS − CT )
2(λ#

τµ)
2 < 1.2× 10−8 . (B.24)

While this is vanishing in the vector leptoquark model, in the case of the scalar leptoquarks

the expression is obtained simply by substituting CS − CT = 2(C1 + C3) and λ#
τµ = βbµ.
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Feruglio, Paradisi, Pattori 1606.00524, 1705.00929

E.g. Efrat et al. 1503.07872
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h→ μμ from (g-2)μ

Assuming at Λ one has:

To fit the deviation (I put Λ=2TeV in the log):

mt-enhanced effect in h→μμ:

The two possible tree-level mediators for Clequ(3), 
S1~(3̅, 1, 1/3) and  S2~(3, 2, 7/6), 

generate both operators, e.g. for S1:

N.B.: in the model, the complete 1-loop 
expressions are required for such an analysis.

de Blas et al. 1711.10391
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h→ μμ from (g-2)μ
Crivellin, Muller, Saturnino 2008.02643

2

h

µ

µ

t(c)

t(c)

Si

µ µ

�

t(c)

Si Si

FIG. 1: Sample Feynman diagrams which contribute to h !
µ+µ� (top) and the AMM of the muon (bottom). In addition,
diagrams where the Higgs and photon couple to the LQ as well
as self-energy diagrams contribute.

SETUP AND OBSERVABLES

As we motivated in the introduction, we will focus on

the three scalar LQs S1, S2 and S3. These representa-

tions couple to fermions as follows
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ūf�

T

2 i⌧2Lj + �
LR

fj
Q̄f `jS2 + h.c.

S3

✓
3, 3,�2

3

◆

fj

Q̄
c

f
i⌧2 (⌧ · S3)

†
Lj + h.c.

Here GSM refers to the SM gauge group SU(3)c ⇥
SU(2)L ⇥ U(1)Y , L (Q) is the lepton (quark) SU(2)L

doublet, u (`) the up-type quark (lepton) singlet and

c refers to charge conjugation. Furthermore, j and f

are flavor indices and ⌧ the Pauli matrices. Since we

are in the following only interested in muon couplings to

third generation quarks, we define �
R
⌘ �

R

32, �L
⌘ �

L

32,

�
LR

⌘ �
LR

32 , �
RL

⌘ �
RL

32 ,  = 32. In addition to the

gauge interactions, which are determined by the repre-

sentation under the SM gauge group, LQ can couple to

the SM Higgs [84]

LH = Y13S
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†
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�
+ h.c. (2)
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Here m
2
k
are the SU(2)L invariant bi-linear masses of the

LQs. After SU(2)L breaking, the term Y13 generates o↵-

diagonal elements in the LQ mass matrices and one has

to diagonalize them through unitary transformations in

order to arrive at the physical basis. Therefore, non-zero

values of Y13 are necessary to generate mt/mµ enhanced

e↵ects in scenario 3). Y1 and Y2,22 are phenomenologi-

cally relevant for h ! µ
+
µ
�
in scenario 1) and 2), respec-

tively, but not necessary for an mt/mµ enhancement.

Now we can calculate the e↵ects in aµ and h !
µ
+
µ
�

[129] for which sample diagrams are shown in

Fig. 1. In both cases we have on-shell kinematics. For

aµ the self-energies can simply be taken into account via

the Lehmann-Symanzik-Zimmermann formalism and no

renormalization is necessary. This is however required

for h ! µ
+
µ
�

in order to express the result in terms

of the physical muon mass. Here, the e↵ective Yukawa

coupling, which enters h ! µ
+
µ
�
, is given by

Y
e↵
µ

=
m

µ
� ⌃

LR

µµ

v
+ ⇤

LR

µµ
, (3)

where ⇤
LR

µµ
is the genuine vertex correction shown in

Fig. 1 and ⌃
LR

µµ
is the chirality changing part of the muon

self-energy. In these conventions �i⌃
LR

µµ
PR equals the

expression of the Feynman diagram for the self-energy.

Note that Y
e↵
µ

is finite without introducing a counter-

term. For aµ we expand in the muon mass and external

momenta up to the first non-vanishing order, while in

h ! µ
+
µ
�
external momenta can be set to zero from the

outset but we expand in m
2
h
/m

2
1,2,3. The resulting am-

plitudes can be further simplified by expanding the LQ

mixing matrices and mass eigenvalues in v
2
/m

2
1,2,3 and

the loop functions in m
2
h
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2
t
, which gives a very precise

numerical approximation, resulting in
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FIG. 1: Sample Feynman diagrams which contribute to h !
µ+µ� (top) and the AMM of the muon (bottom). In addition,
diagrams where the Higgs and photon couple to the LQ as well
as self-energy diagrams contribute.

SETUP AND OBSERVABLES

As we motivated in the introduction, we will focus on

the three scalar LQs S1, S2 and S3. These representa-

tions couple to fermions as follows
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Here GSM refers to the SM gauge group SU(3)c ⇥
SU(2)L ⇥ U(1)Y , L (Q) is the lepton (quark) SU(2)L

doublet, u (`) the up-type quark (lepton) singlet and

c refers to charge conjugation. Furthermore, j and f

are flavor indices and ⌧ the Pauli matrices. Since we

are in the following only interested in muon couplings to
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Here m
2
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are the SU(2)L invariant bi-linear masses of the

LQs. After SU(2)L breaking, the term Y13 generates o↵-

diagonal elements in the LQ mass matrices and one has

to diagonalize them through unitary transformations in

order to arrive at the physical basis. Therefore, non-zero

values of Y13 are necessary to generate mt/mµ enhanced

e↵ects in scenario 3). Y1 and Y2,22 are phenomenologi-

cally relevant for h ! µ
+
µ
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in scenario 1) and 2), respec-

tively, but not necessary for an mt/mµ enhancement.

Now we can calculate the e↵ects in aµ and h !
µ
+
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[129] for which sample diagrams are shown in

Fig. 1. In both cases we have on-shell kinematics. For

aµ the self-energies can simply be taken into account via

the Lehmann-Symanzik-Zimmermann formalism and no

renormalization is necessary. This is however required

for h ! µ
+
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in order to express the result in terms
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coupling, which enters h ! µ
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is the chirality changing part of the muon

self-energy. In these conventions �i⌃
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PR equals the

expression of the Feynman diagram for the self-energy.

Note that Y
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is finite without introducing a counter-

term. For aµ we expand in the muon mass and external

momenta up to the first non-vanishing order, while in
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external momenta can be set to zero from the

outset but we expand in m
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plitudes can be further simplified by expanding the LQ
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FIG. 1: Sample Feynman diagrams which contribute to h !
µ+µ� (top) and the AMM of the muon (bottom). In addition,
diagrams where the Higgs and photon couple to the LQ as well
as self-energy diagrams contribute.
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SU(2)L ⇥ U(1)Y , L (Q) is the lepton (quark) SU(2)L

doublet, u (`) the up-type quark (lepton) singlet and

c refers to charge conjugation. Furthermore, j and f

are flavor indices and ⌧ the Pauli matrices. Since we

are in the following only interested in muon couplings to

third generation quarks, we define �
R
⌘ �

R

32, �L
⌘ �

L

32,

�
LR

⌘ �
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32 , �
RL

⌘ �
RL

32 ,  = 32. In addition to the

gauge interactions, which are determined by the repre-

sentation under the SM gauge group, LQ can couple to

the SM Higgs [84]
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Here m
2
k
are the SU(2)L invariant bi-linear masses of the

LQs. After SU(2)L breaking, the term Y13 generates o↵-

diagonal elements in the LQ mass matrices and one has

to diagonalize them through unitary transformations in

order to arrive at the physical basis. Therefore, non-zero

values of Y13 are necessary to generate mt/mµ enhanced

e↵ects in scenario 3). Y1 and Y2,22 are phenomenologi-

cally relevant for h ! µ
+
µ
�
in scenario 1) and 2), respec-

tively, but not necessary for an mt/mµ enhancement.

Now we can calculate the e↵ects in aµ and h !
µ
+
µ
�

[129] for which sample diagrams are shown in

Fig. 1. In both cases we have on-shell kinematics. For

aµ the self-energies can simply be taken into account via

the Lehmann-Symanzik-Zimmermann formalism and no

renormalization is necessary. This is however required

for h ! µ
+
µ
�

in order to express the result in terms

of the physical muon mass. Here, the e↵ective Yukawa

coupling, which enters h ! µ
+
µ
�
, is given by

Y
e↵
µ

=
m

µ
� ⌃

LR

µµ

v
+ ⇤

LR

µµ
, (3)

where ⇤
LR

µµ
is the genuine vertex correction shown in

Fig. 1 and ⌃
LR

µµ
is the chirality changing part of the muon

self-energy. In these conventions �i⌃
LR

µµ
PR equals the

expression of the Feynman diagram for the self-energy.

Note that Y
e↵
µ

is finite without introducing a counter-

term. For aµ we expand in the muon mass and external

momenta up to the first non-vanishing order, while in

h ! µ
+
µ
�
external momenta can be set to zero from the

outset but we expand in m
2
h
/m

2
1,2,3. The resulting am-

plitudes can be further simplified by expanding the LQ

mixing matrices and mass eigenvalues in v
2
/m

2
1,2,3 and

the loop functions in m
2
h
/m

2
t
, which gives a very precise

numerical approximation, resulting in
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FIG. 2: Correlations between the Br[h ! µ+µ�], normalized to its SM value, and the NP contribution in the anomalous
magnetic moment of the muon �aµ for scenario 1) (left) and scenario 2) (right) with m1,2 = 1.5TeV. The predictions for
di↵erent values of the LQ couplings to the Higgs are shown, where for scenario 1) Y = Y1 while in scenario 2) Y = Y2 + Y22.
Even though the current ATLAS and CMS results are not yet constraining for this model, sizeable e↵ects are predicted, which
can be tested at future colliders. Furthermore, scenario 1) yields a constructive e↵ect in h ! µ+µ� while the one in scenario
2) is destructive such that they can be clearly distinguished with increasing experimental precision.

with the loop functions given by

J (x, y) = 2 (x� 4) log(y)� 8 +
13

3
x ,

E1(x) = 1 + 4 log(x) ,

E2(x) = 7 + 4 log(x) ,

E3(x, y) = E2(y) +
4 log(x)

x� 1
.

(6)

We only considered the mt enhanced e↵ects and ne-

glected small CKM rotations, which in principle appear

after EW symmetry breaking. As anticipated, in Eq. (5)

one can see that scenario 3) only contributes if Y13 is non-

zero. Furthermore, since in this scenario aµ has a relative

suppression of v
2
/m

2
1,3 with respect to h ! µ

+
µ
�
, one

expects here the largest e↵ects in Higgs decays. In prin-

ciple also Y1, Y2 and Y22 enter in Eq. (5). However, their

e↵ect is sub-leading as it is suppressed by v
2
/m

2
1,2.

PHENOMENOLOGY

Let us now study the correlations between aµ and

h ! µ
+
µ
�
in our three scenarios with mt-enhanced con-

tributions. First, we consider scenario 1) and 2) where S1

and S2 give separately rise to mt-enhanced e↵ects in aµ

and h ! µ
+
µ
�
. Since both processes involve the same

product of couplings to SM fermions, the correlation de-

pends only weakly via a logarithm onm
2
t
/m

2
1,2. However,

there is a dependence on Y1 and Y22 + Y2 which breaks

the direct correlation but cannot change the sign of the

e↵ect for order one couplings. This can be seen in Fig. 2,

where the correlations are depicted for m1,2 = 1.5 TeV,

respecting LHC bounds [85–87]. The predicted e↵ect is

not large enough such that the current ATLAS and CMS

measurements are sensitive to it. However, note that it

is still sizeable due to the mt enhancement and therefore

detectable at future colliders where the ILC [88], the HL-

LHC [89], the FCC-ee [90] and the FCC-hh [91] aim at a

precision of approximately 10%, 8%, 6% and below 1%,

respectively. Furthermore, the e↵ect in Br[h ! µ
+
µ
�
] in

scenario 1) is necessarily constructive while in scenario 2)

it is destructive, such that in the future a LQ explanation

of aµ by S1 could be clearly distinguished from the one

involving S2.

In scenario 3), where S1 only couples to right-handed

fermions, the e↵ect in Br[h ! µ
+
µ
�
] is even more pro-

nounced due to the relative suppression of the contribu-

tion to aµ by v
2
/m

2
1,3, see Eq. (5). Furthermore, in this

case the correlation between aµ and h ! µ
+
µ
�

depends

to a good approximation only on the ratio m1/m3. As

the e↵ect is symmetric in m1 and m3 we fix one mass to

1.5 TeV and obtain the band shown in Fig. 3 by vary-

ing the other mass between 1.5 and 3 TeV. The e↵ect in

h ! µ
+
µ
�

within the preferred region for aµ is neces-

sarily constructive and large enough that an explanation

of the central value of aµ is already disfavored by the

ATLAS and CMS measurements of h ! µ
+
µ
�
. Clearly,

with more data the LHC will be able to support (dis-
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FIG. 1: Sample Feynman diagrams which contribute to h !
µ+µ� (top) and the AMM of the muon (bottom). In addition,
diagrams where the Higgs and photon couple to the LQ as well
as self-energy diagrams contribute.

SETUP AND OBSERVABLES

As we motivated in the introduction, we will focus on

the three scalar LQs S1, S2 and S3. These representa-

tions couple to fermions as follows
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Here GSM refers to the SM gauge group SU(3)c ⇥
SU(2)L ⇥ U(1)Y , L (Q) is the lepton (quark) SU(2)L

doublet, u (`) the up-type quark (lepton) singlet and

c refers to charge conjugation. Furthermore, j and f

are flavor indices and ⌧ the Pauli matrices. Since we

are in the following only interested in muon couplings to

third generation quarks, we define �
R
⌘ �

R

32, �L
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L

32,

�
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⌘ �
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32 , �
RL
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32 ,  = 32. In addition to the

gauge interactions, which are determined by the repre-

sentation under the SM gauge group, LQ can couple to

the SM Higgs [84]
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Here m
2
k
are the SU(2)L invariant bi-linear masses of the

LQs. After SU(2)L breaking, the term Y13 generates o↵-

diagonal elements in the LQ mass matrices and one has

to diagonalize them through unitary transformations in

order to arrive at the physical basis. Therefore, non-zero

values of Y13 are necessary to generate mt/mµ enhanced

e↵ects in scenario 3). Y1 and Y2,22 are phenomenologi-

cally relevant for h ! µ
+
µ
�
in scenario 1) and 2), respec-

tively, but not necessary for an mt/mµ enhancement.

Now we can calculate the e↵ects in aµ and h !
µ
+
µ
�

[129] for which sample diagrams are shown in

Fig. 1. In both cases we have on-shell kinematics. For

aµ the self-energies can simply be taken into account via

the Lehmann-Symanzik-Zimmermann formalism and no

renormalization is necessary. This is however required

for h ! µ
+
µ
�

in order to express the result in terms

of the physical muon mass. Here, the e↵ective Yukawa

coupling, which enters h ! µ
+
µ
�
, is given by

Y
e↵
µ

=
m

µ
� ⌃

LR

µµ

v
+ ⇤

LR

µµ
, (3)

where ⇤
LR

µµ
is the genuine vertex correction shown in

Fig. 1 and ⌃
LR

µµ
is the chirality changing part of the muon

self-energy. In these conventions �i⌃
LR

µµ
PR equals the

expression of the Feynman diagram for the self-energy.

Note that Y
e↵
µ

is finite without introducing a counter-

term. For aµ we expand in the muon mass and external

momenta up to the first non-vanishing order, while in

h ! µ
+
µ
�
external momenta can be set to zero from the

outset but we expand in m
2
h
/m

2
1,2,3. The resulting am-

plitudes can be further simplified by expanding the LQ

mixing matrices and mass eigenvalues in v
2
/m

2
1,2,3 and

the loop functions in m
2
h
/m

2
t
, which gives a very precise

numerical approximation, resulting in
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The effect in h→μμ is larger in a scenario 
with two leptoquarks, S1 and S3, that 
can mix, and S1 only couples to RH 
fermions.

See also Dorsner, Fajfer, Sumensari 1910.03877
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FIG. 3: Correlations between the NP contribution to the AMM of the muon (�aµ) and Br[h ! µ+µ�], normalized to its SM
value in scenario 3). This correlation depends to a good approximation only on the ratio m1/m3. As the e↵ect is symmetric
in m1 and m3, we fix one mass to 1.5TeV and obtain the dark-blue band by varying the other mass between 1.5TeV and
3TeV. The e↵ect in h ! µ+µ� within the preferred region for aµ is necessarily constructive and so large that an explanation
is already constrained by the ATLAS and CMS measurements of h ! µ+µ�.

prove) this scenario if it finds a (no) significant enhance-

ment of the h ! µ
+
µ
�
decay, assuming �aµ is confirmed.

This scenario also leads to sizeable e↵ects in Zµµ [26]

which are compatible with LEP data [92], but could be

observed at the ILC [88], CLIC [93] or the FCC-ee [90].

CONCLUSIONS

LQs are prime candidates for an explanation of the ex-

perimental hints for LFUV. In particular, there are three

possible LQ scenarios which can address the discrepancy

in the AMM of the muon by an mt/mµ enhancement.

Interestingly, this also leads to enhanced corrections in

h ! µ
+
µ
�
, which involve the same coupling structure

as the aµ contribution. This leads to interesting corre-

lations between aµ and h ! µ
+
µ
�
, which we study in

light of the recent ALTAS and CMS measurements.

We find that scenario 3), in which S1 only couples

to right-handed fermions and mixes after EW symme-

try breaking with S3, predicts large constructive e↵ects

in h ! µ
+
µ
�

such that the current ATLAS and CMS

measurements are already excluding part of the param-

eter space. In case �aµ is solely explained by S1 or S2

the e↵ect in Br[h ! µ
+
µ
�
] is of the order of several %

and therefore detectable at future colliders, in particu-

lar at the FCC-hh. Furthermore, while the S1 scenario

predicts constructive interference in h ! µ
+
µ
�

for the

currently preferred range for aµ, the S2 scenario predicts

destructive interference such that they can be clearly dis-

tinguished in the future.

Therefore, if the forthcoming measurements of aµ

by the Fermilab experiment [94] and the independent

(approved) experiment at J-PARC [95] confirm the aµ

anomaly, this will strengthen the case for LQs and fur-

ther enhance the importance of precisions measurements

of h ! µ
+
µ
�
.
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1 Introduction

The Standard Model (SM) of particle physics provides an excellent description of physical
phenomena in a wide range of energies and scales. Despite no direct evidence for new
physics emerged in direct searches at the LHC, for several years now some low energy
measurements continue to show significant deviations from the respective SM predictions,
which fuel the hope that some New Physics (NP) might be lurking somewhere at the TeV
scale. The most significant and robust deviations, that we take into account in this work,
are the following:

• deviations from the SM predictions in the lepton flavour universality (LFU) ra-
tios of semileptonic B-meson decays in ⌧ vs. light leptons, R(D(⇤)) = Br(B !
D(⇤)⌧⌫)/Br(B ! D(⇤)`⌫) (where ` = µ, e) [1–11],

• a deficiency in LFU ratios of rare B decays in muons vs. electrons, R(K(⇤)) =
Br(B ! K(⇤)µµ)/Br(B ! K(⇤)ee) [12–15],

• deviations in di↵erential angular distributions of the B ! K⇤µ+µ� decay, as well
as in several branching ratios of b ! sµµ processes [16–21],

• a longstanding deviation from the SM prediction in the muon anomalous magnetic
moment (g � 2)µ [22, 23].

While also other measurements show deviations from the SM, those above stand out
and have been the focus of a large amount of theoretical and experimental e↵ort. In
all cases, large theory e↵orts for improving the SM predictions (often very challenging)
have been undertaken, and several experimental endeavours and analyses have been set
up for confirming, disproving, or providing cross-checks, for the anomalies. Indeed, new
measurements scheduled to appear within the next few years are expected to clarify the
nature of all these anomalies. A confirmation for the presence of new physics in any one
of these observables would of course be revolutionary in our understanding of physics at
the TeV scale.

For the same reasons, an equally large e↵ort has been put into finding possible new
physics explanations. In case of the B anomalies, leptoquarks (LQ) at the TeV scale
can provide good explanations, even combining neutral and charged-current anomalies.
If they couple to both left and right-handed muons, also the muon anomalous magnetic
moment could be addressed. In all scenarios, in order to find a good explanation it is
necessary to consider the constraints imposed by a large set of observables generated both
at tree-level and radiatively. In some cases, renormalization group evolution (RGE) of the
operators generated at the matching scale down to the scale of the observables represent
the leading radiative e↵ect [24–27], however since the logarithm is often just of O(1),
finite contributions can have a relevant impact.

In case of vector leptoquarks, such finite terms are calculable only in ultraviolet-
complete models, thus making the analysis necessarily model-dependent (see e.g. [28–31]
for analyses of specific gauge models of lepton-quark unification). On the other hand,
scalar leptoquarks can be considered as self-consistent simplified models, and all observ-
ables can be computed precisely in terms of the LQ couplings and masses. A particularly
promising set of LQ to address the observed anomalies are the S1 = (3̄,1, 1/3) and

3

S3 = (3̄,3, 1/3) representations.1 Several works have been dedicated to study their phe-
nomenology. The S1 leptoquark has been considered as possible mediator for all anoma-
lies [32–41], with varying degree of success. S3, instead, has long been recognized to be a
very good candidate to address the deviations in the b ! sµµ transition [42–49]. Finally,
the combination of both leptoquarks has been considered as a good combined explanation
of charged and neutral-current B-anomalies [50, 51] and possible ultraviolet (UV) com-
pletions have been proposed in terms of a composite Higgs model [52], combining flavour
anomalies with a solution to the Higgs hierarchy problem, as well as in the framework of
asymptotically safe quantum gravity [53].

More recently, one-loop computations of several observables in this model have been
published [54–57]. The approach adopted in these works is to compute directly in the
model the dominant one-loop contributions to the desired observables. This methodology
is however prone to missing possible relevant e↵ects, and is not suitable to be systemati-
cally generalizable.

In this work we aim to perform a complete one-loop analysis of the S1 + S3 model,
focussed at addressing the anomalies listed above, while being consistent with all relevant
experimental constraints. We adopt an approach based on e↵ective field theories (EFT),
leveraging on our previous work [58] where the complete one-loop matching of the S1+S3

model to gauge-invariant dimension-six operators of the SMEFT, in the Warsaw basis [59],
is presented. The EFT approach is designed to factorize the UV-dependent part of the
problem, i.e. the UV matching, from the purely low-energy one. The latter involves RGE
of the EFT coe�cients to the energy scale of the observables and the computation of the
observables at one-loop, within the EFT, see e.g. Ref. [60] for a simpler case of a scalar
singlet. As we shall describe, most of these steps are already available in the literature
in complete generality. The complete one-loop UV matching, done manually as in [58],
requires a substantial amount of work, however it is possible to proceed systematically
without neglecting terms. Furthermore, this step is expected to become automatised in
the near future. This will facilitate extending this work to include more observables, or to
apply it to di↵erent UV models. In case of leptoquarks and low-energy observables, the
use of EFT approaches is even more justified by the collider bounds from LHC, which put
lower bounds on leptoquark masses close to the ⇡ 1 TeV scale, see e.g. Refs. [52, 56] for
recent reviews of pair production searches of S1 and S3. Truncating the EFT expansion
at dimension-six implies an implicit uncertainty in the evaluation of the NP contributions
to observables, due to missing higher-dimension operators, that can be estimated being of
O(E2/M2

LQ
) or O(m2

EW
/M2

LQ
) compared to the corresponding dimension-six contribution,

where E is the typical energy of the process under consideration and mEW an electroweak-
scale mass. While former e↵ects are completely negligible, the latter are ⇠ 1% for TeV-
scale leptoquarks, which do not a↵ect the results in any sizeable way, given present day
precision in the observables.2

Our goal is to find interesting scenarios, within the S1+S3 setup, capable of addressing
one or more of the anomalies listed above, find the preferred region in parameter space,
and discuss the most important experimental constraints in each case. Specifically, we
first aim to quantify how well each leptoquark can address which set of anomalies, then we

1We show the representations under the SM gauge group SU(3)c ⇥ SU(2)L ⇥ U(1)Y
2Dimension-eight terms could be relevant if they generate at tree-level an observable that is instead

loop-induced at dimension-six. This, however, does not happen in this UV model for the observables
under consideration.
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B-anomalies and aμ motivate the scalar LQ pair

Their potential couplings to the Higgs 
can be probed by Higgs and EW physics

discuss combined explanations with both leptoquarks. Thanks to the complete one-loop
matching, we also discuss limits on leptoquark couplings to the SM Higgs boson, arising
from electroweak precision data and Higgs measurements.

In Sec. 2 we present the S1 + S3 model, the methodology employed in the analysis,
and present the list of all observables included in the fit, including a discussion of the
relevant collider bounds, particularly those from Drell-Yan. The results for all scenarios
considered are collected in Sec. 3 and a discussion on future prospects can be found in
Sec. 4. We conclude in Sec. 5. In App. A we describe in details the LQ contributions to
all the observables considered.

2 Setup

The Lagrangian for the two leptoquarks is the following

LLQ = |DµS1|2 + |DµS3|2 �M2
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for a generic field � charged under the SM gauge group. We denote SM quark and
lepton fields by qi, ui, di, `↵, and e↵, while the Higgs doublet is H. We adopt latin
letters (i, j, k, . . . ) for quark flavor indices and greek letters (↵, �, �, . . . ) for lepton
flavor indices. We work in the down-quark and charged-lepton mass eigenstate basis,
where
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and V is the CKM matrix. Except for the sign of gauge couplings, here and in the
following we use the same notation specified in [58].

Integrating out at tree-level the two LQ, the following semileptonic operators are
generated:
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The complete one-loop matching between the UV theory and the SMEFT in the Warsaw
basis, as well as the definitions for the e↵ective operators, are reported in [58].

3See Ref. [49] for an explicit setup forbidding baryon-violating couplings of S3 in a gauge model.
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discuss combined explanations with both leptoquarks. Thanks to the complete one-loop
matching, we also discuss limits on leptoquark couplings to the SM Higgs boson, arising
from electroweak precision data and Higgs measurements.

In Sec. 2 we present the S1 + S3 model, the methodology employed in the analysis,
and present the list of all observables included in the fit, including a discussion of the
relevant collider bounds, particularly those from Drell-Yan. The results for all scenarios
considered are collected in Sec. 3 and a discussion on future prospects can be found in
Sec. 4. We conclude in Sec. 5. In App. A we describe in details the LQ contributions to
all the observables considered.
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allows to probe heavy new physics. Loop contributions to other couplings, which arise at
tree-level in the SM, are instead too small to have a sizeable impact. We thus consider
the combined fit of Higgs couplings in the -framework where only � and g are left free,
and a constraint on �/�SM(Z�) = 2

g
2

Z�
, which is however still not precisely measured,

see Table 5. The approximate contributions to these parameters in our model are given
by (details in App. A.13)

g � 1 = �(3.51�H3 + 1.17�H1)⇥ 10�2/m2 ,

� � 1 = �(2.32�H3 + 0.66�✏H3 � 0.11�H1)⇥ 10�2/m2 ,

Z� � 1 = �(1.89�H3 + 0.23�✏H3 � 0.033�H1)⇥ 10�2/m2 .

(3.13)

Analogously to what presented above for flavour observables, we combine Higgs cou-
plings and oblique constraints in a global likelihood. From this we find the maximum
likelihood point and construct the 68, 95, and 99% CL regions in planes of two couplings,
where the other two are marginalised. The results in the (�H1,�H3) and (�H13,�✏H3) planes
are shown in Fig. 7 for M1 = M3 = 1 TeV. We observe that a limit of about 1.5 can be
put on both �H13 and �✏H3 (right panel). This comes mainly from the contribution to
the T̂ parameter, Eq. (3.12), which is quadratic in the two couplings and thus allows to
constrain both at the same time. The �H1 and �H3 couplings, instead, are constrained
mainly from their contribution to the h�� and hgg couplings, Eq. (3.13). We see that with
present experimental accuracy the limits are still rather weak, and there is an approximate
flat direction which doesn’t allow to put any relevant bound on �H1.

This situation will marginally improve with the more precise Higgs measurements from
HL-LHC [123]. The future expected 95%CL contours are shown as dashed blue lines. This
however has no appreciable e↵ect on the limits shown in the right panel, since those are
dominated by the constraint on the T parameter, which will instead improve substantially
from measurements on the Z pole at FCC-ee. A more detailed analysis of FCC prospects
are however beyond the scope of this paper.

3.6 Comparing with literature

In recent months the S1+S3 model at one-loop accuracy has been studied in Refs. [55,56]
for what regards the flavour anomalies, while Ref. [57] studied electroweak and Higgs
limits on the leptoquark-Higgs couplings. Given the similarity of the goals with out work,
we discuss in this Section the main di↵erences. The most important lies in the approach
used to calculate radiative leptoquark contributions to observables. While previous works
employed direct computations of leptoquark loop contributions to the desired low-energy
amplitudes, in this work we use an EFT approach, whereby the only model-dependent
part of the computation is the one-loop matching to the SMEFT. As argued in the intro-
duction, we believe such an approach has several advantages, the most important being
the automatic inclusion of all new physics e↵ects to all observables at leading order in
1/M2

LQ
expansion and to one-loop accuracy: there is indeed no need to simplify the com-

putation neglecting given terms or couplings, for example all electroweak corrections are
included automatically in our computation.8

8While in the approximate semi-analytical expressions we might neglect some sub-leading terms, in
order to simplify the presentation, all contributions are kept in the numerical analysis.
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Observable Measurement Reference

S 0.04± 0.08 [117]
T 0.08± 0.07 (⇢S,T = 0.92) [117]
g 1.00± 0.06 [118]
� 1.03± 0.07 (⇢�,g = �0.44) [118]

�/�SM(Z�) 2.0+1.0

�0.9
(ATLAS) [119]

�/�SM(Z�) < 3.9 @ 95% CL (CMS) [120]

Table 5: Bosonic observables for the LQ potential couplings.

Figure 7: Limits on LQ potential couplings from oblique corrections and Higgs measurements.
In each panel, the other two couplings have been marginalised. The black point represents the
best-fit point while the dashed blue contours are the prospects for 95%CL limits after HL-LHC.

the LQ model, we obtain (see App. A.13 for details)
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(3.12)

where in the numerical expressions for simplicity we fixed M1 = M3 = m TeV. The
contributions to Y , W , and Z are instead at, or below, the 10�6 level and thus completely
negligible given the present experimental precision. The constraints on S and T from [117]
are reported in Table 5. The contribution to the T parameter from the �H13 coupling has
been also studied in [40], albeit not in the EFT approach. We checked that we agree once
the EFT limit is taken into account.

The LQ couplings to the Higgs also generate at one-loop contributions to hgg, h��,
and hZ� couplings. Since these are also loop-generated in the SM, the percent-level
precision presently available for the Higgs couplings to photons and gluons couplings
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Conclusions

1) Indirect constraints on flavor-less operators in the UV from FCNC via RGE and CKM. 
 
          - In some cases these constraints can be of the same order (or stronger) than direct ones. 
 

2) Flavorful New Physics (e.g. as hinted to by the various flavor anomalies) can manifest itself in 
EW/Higgs observables. This connection can have different degree of “model independence”: 
 
           - it might arise already at the EFT level via RGE  (e.g. Z couplings from R(D(*)) ), 
 
           - it could be "hinted to” by the EFT, but require a UV completion for a robust evaluation, 
 
           - finally, the connection might arise only when a UV completion is assumed.

Flavor can impact EW/Higgs/top physics in two main ways:

To be able to address these cases it is important to perform EFT fits 
keeping the complete flavor dependence.


