Heavy Flavor in EFT Fits workshop (zoom), 12.4.2021

Top and Beauty synergies in SMEFT fits

based on works with Stefan Bissmann, Cornelius Grunwald and Kevin Kröninger, 2012.10456 [hep-ph]

Gudrun Hiller, TU Dortmund

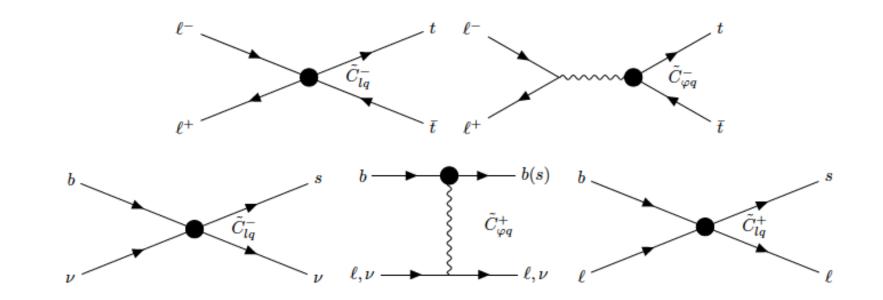
Supported by the Federal Ministry for Education and Research (BMBF)

DPG spring meeting March 2021: 6 sessions on flavor physics

NA 62	S
Belle, BaBar	c,b
BES III	c
Belle II	c,b
LHCb	c,b,(s)
ATLAS, CMS	$b,t\;(c,s)$
Z-factory (CLIC-like)	<i>c</i> , <i>b</i> (<i>t</i>)

Dream time to be in flavor physics

- 2 anomalies strengthened in past 3 weeks: R_K : 3.1σ new LHCb, (g-2) of muon 4.2σ new FNAL result
- rates and angular distributions $b \rightarrow s \mu \mu$, $b \rightarrow s \gamma$ aka "the global fit"
- $-R_{K,K^*}$ branching ratios $b \rightarrow s\mu\mu$ vs $b \rightarrow see$
- $R_{D,D^*} \ b \to c \tau \nu \text{ vs } b \to c(e,\mu) \nu$
- Cabibbo-angle anomaly V_{us} from $s \rightarrow u \mu \nu$ vs $d \rightarrow u e \nu$
- -(g-2) of muon and electron


common denominator: "something with leptons (in low energy data)"

Flavor continues to be interesting and inspiring; the anomalies require flavor BSM model building and flavorful fits.

towards more global approach across the flavors s, c, b, t...

NA 62	s
Belle, BaBar	c,b
BES III	с
Belle II	c,b
LHCb	c,b,(s)
ATLAS, CMS	b,t

The tool to achieve a cross community global analysis are effective field theories: Study correlations among multi-observables from different experiments $(B \to K^{(*)}\mu\mu, B_s \to \mu\mu, B \to X_s\gamma)$ in WET (aka C_7, C_9, C_{10} -fits). ongoing precision program Use SMEFT to include tops, and exploit unbroken SM symmetries $SU(2)_L \times U(1)_Y$ as a lab for flavor links.

SMEFT coefficients $C^{\pm} = C^{(1)} \pm C^{(3)}$ top and beauty, leptons and neutrinos, linked and complementary; flat directions are removed $b \rightarrow s\mu\mu$ (LHC), probes C^+

 $b \rightarrow s \nu \nu$ (BelleII), probes C^-

 $e^+e^- \rightarrow t\bar{t}$ (CLIC-like), probes C^- — quark flavor link implied $C_{23} = V_{tb}V_{ts}^*C_{33}$, lepton universality,....

11 dim 6 operators in fit 2012.10456. Penguins, dipole operators

$$O_{\varphi q}^{(1)} = \left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)\left(\bar{q}_{L}\gamma^{\mu}q_{L}\right), \quad O_{\varphi q}^{(3)} = \left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)\left(\bar{q}_{L}\tau^{I}\gamma^{\mu}q_{L}\right),$$
$$O_{\varphi u} = \left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)\left(\bar{u}_{R}\gamma^{\mu}u_{R}\right), \\ O_{uG} = \left(\bar{q}_{L}\sigma^{\mu\nu}T^{A}u_{R}\right)\tilde{\varphi}G_{\mu\nu}^{A},$$
$$O_{uB} = \left(\bar{q}_{L}\sigma^{\mu\nu}u_{R}\right)\tilde{\varphi}B_{\mu\nu}, \\ O_{uW} = \left(\bar{q}_{L}\sigma^{\mu\nu}\tau^{I}u_{R}\right)\tilde{\varphi}W_{\mu\nu}^{I},$$

and semileptonic four-fermion operators

$$O_{lq}^{(1)} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{q}_L \gamma^\mu q_L\right), O_{lq}^{(3)} = \left(\bar{l}_L \gamma_\mu \tau^I l_L\right) \left(\bar{q}_L \gamma^\mu \tau^I q_L\right), O_{qe} = \left(\bar{q}_L \gamma_\mu q_L\right) \left(\bar{e}_R Q_{eu} = \left(\bar{e}_R \gamma_\mu e_R\right) \left(\bar{u}_R \gamma^\mu u_R\right), \quad O_{lu} = \left(\bar{l}_L \gamma_\mu l_L\right) \left(\bar{u}_R \gamma^\mu u_R\right).$$

Corresponding Wilson coefficients have up to four flavor indices, for instance $C_{lq}^{(1)klij} \cdot (\bar{l}_{Lk}\gamma_{\mu}l_{Ll}) (\bar{q}_{Li}\gamma^{\mu}q_{Lj}), \quad i, j, k, l = 1, 2, 3.$

Quark flavor patterns in operators: $\bar{q}_{Li}(..)q_{Lj}$, $\bar{q}_{Li}(..)u_{Rj}$ and $\bar{u}_{Ri}(..)u_{Rj}$. Top-(beauty)-philic flavor pattern: only $C^{i=3,j=3}$ switched on.

Consider second-third generation only

Top-(beauty)-philic:
$$C_x^{ij} = C_x^{33} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 for all 11 ops O_x .

Flavor mixing for doublets q_L : $V_{\text{CKM}} = V_u V_d^{\dagger}$. In up-mass basis $V_u = 1$. $d_L^{\text{mass}} = V_{\text{CKM}} d_L^{\text{flavor}}$

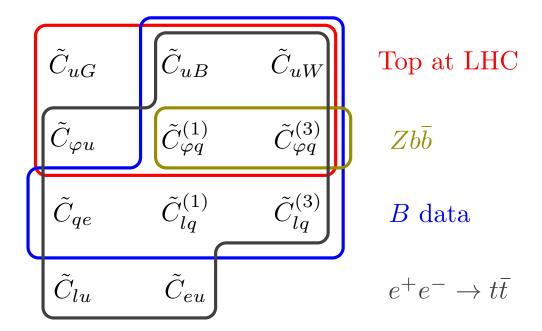
all
$$\bar{q}_{Li}(..)q_{Lj}$$
 ops:
 $C_{lq}^{(1,3)}, C_{\varphi q}^{(1,3)} \propto \begin{pmatrix} |V_{ts}|^2 & V_{tb}V_{ts}^* \\ h.c. & |V_{tb}|^2 \end{pmatrix} \sim \begin{pmatrix} 0 & -0.04 \\ -0.04 & 1 \end{pmatrix}$
tree level FCNCs; synergies between top and $b \to s$ anomalies

1. most of todays data, e.g., $b \to s\ell^+\ell^-$, is for $\ell = \mu$. Therefore, most of the results are "lepton-specific" k = l = 2.

2. notable exceptions are bounds on dineutrino modes $B(B \to K^{(*)} \nu \bar{\nu}) = \sum_{k,l} B(B \to K^{(*)} \nu_k \bar{\nu}_l)$, which are flavor-summed.

3. To include 2., we assume lepton universality. So, in the semileptonic 4-fermion operators, we assume for the lepton flavor $C^{kl} \propto \delta_{kl}$.

(in view of 1., this is only a mild assumption, however, turns out that $B(B \to K^{(*)} \nu \bar{\nu}$ in particular when observed, is an important constraint)


4. In view of current tensions with R_K etc, it is desirable to perform lepton-specific fits for ee, $\mu\mu$ ($\tau\tau$) operators as well as LFV ones.

choose your initial state: e^+e^- -collider, muon collider are complementary

procedure:

scan 11 C_i at $\Lambda = 1$ TeV. 1-loop RGE to m_t , m_W . Matching onto WET, computation of *b*-observables, flavio, wilson tools

confronting to data; EFT-fitter

Process	Observable	Two-fermion operators	sl. four-fermion operators
$pp \to t\bar{t}$	$\sigma^{\sf inc}$	$ ilde{C}_{uG}$	-
$pp \to t \bar{t} \gamma$	σ^{fid}	$ ilde{C}_{uB}$, $ ilde{C}_{uW}$, $ ilde{C}_{uG}$	-
$pp \to t\bar{t}Z$	$\sigma^{\sf inc}$	$ ilde{C}_{uB}$, $ ilde{C}_{uW}$, $ ilde{C}_{uG}$, $ ilde{C}_{arphi q}^{-}$, $ ilde{C}_{arphi u}$	-
$t \to bW$	$F_{0,L}$	$ ilde{C}_{uW}$	-
Top decay	Γ_t	$ ilde{C}^{(3)}_{arphi q}$, $ ilde{C}_{uW}$	-
$Z \to b \bar{b}$	A^b_{FB} , R_b , σ_{had}	$ ilde{C}^+_{arphi q}$	-
$b \rightarrow s \gamma$	BR	$\left[\tilde{C}_{uB}\right], \left[\tilde{C}_{uW}\right], \left\{\tilde{C}_{uG}\right\}, \left[\tilde{C}_{\varphi q}^{(3)}\right]$	-
$b \to s \ell^+ \ell^-$	BR, A_{FB} , $P_i^{(\prime)}$,		$ ilde{C}_{lq}^{+(st)}$, $ ilde{C}_{qe}^{(st)}$
$b \to s \nu \bar{\nu}$	BR	$ ilde{C}^{+(**)}_{arphi q}$	$ ilde{C}_{lq}^{-(*)}$
Mixing	ΔM_s	$\left[ilde{C}_{uW} ight]$, $\left\{ ilde{C}_{uG} ight\}$, $\left[ilde{C}_{arphi q}^{(1,3)} ight]$	-
$e^+e^- \rightarrow t\bar{t}$	σ , A_{FB}	$ ilde{C}_{uB}, ilde{C}_{uW}, \left\{ ilde{C}_{uG}\right\}, ilde{C}_{\varphi q}^{-}, ilde{C}_{\varphi u}$	$ ilde{C}_{eu}, ilde{C}_{qe}, ilde{C}_{lu}, ilde{C}_{lq}^-$

Process	Observable	\sqrt{S}	Int. luminosity	Experime
$t ar{t} \gamma$	$\sigma^{\rm fid}(t\bar{t}\gamma,1\ell),\;\sigma^{\rm fid}(t\bar{t}\gamma,2\ell)$	13 TeV	36.1 fb $^{-1}$	ATLAS
$t\overline{t}Z$	$\sigma^{\rm inc}(t\bar{t}Z)$	13 TeV	77.5 fb $^{-1}$	CMS
$t\bar{t}$	$\sigma^{ m inc}(t ar{t})$	13 TeV	36.1 fb $^{-1}$	ATLAS
	$F_0 , \ F_L$	8 TeV	20.2 fb^{-1}	ATLAS
	Γ_t	8 TeV	20.2 fb $^{-1}$	ATLAS

Table 1: Considered bservables for top- quark processes at the LHC 2012.10456 [hep-ph].

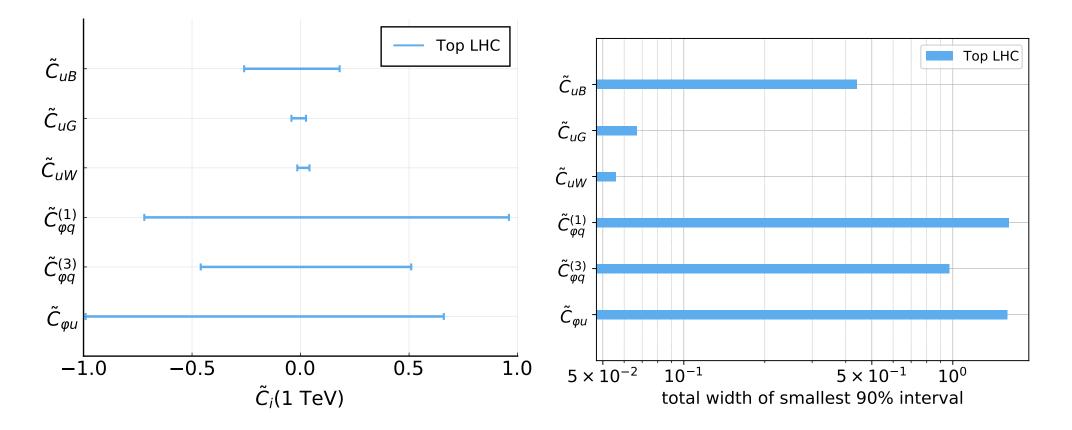


Figure 1: Constraints on SMEFT \tilde{C}_i at $\Lambda = 1$ TeV from top measurements in Tab. 1; marginalized smallest intervals containing 90 % posterior probability (left) and the total width of these intervals (right). For all coefficients we choose a uniform distribution in $-1 \leq \tilde{C}_i \leq 1$ as the prior. 6 WCs constrained

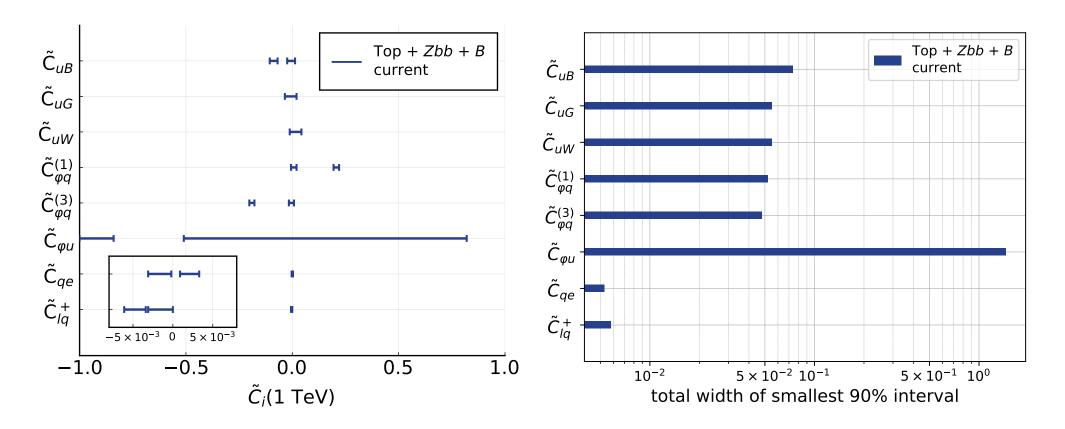
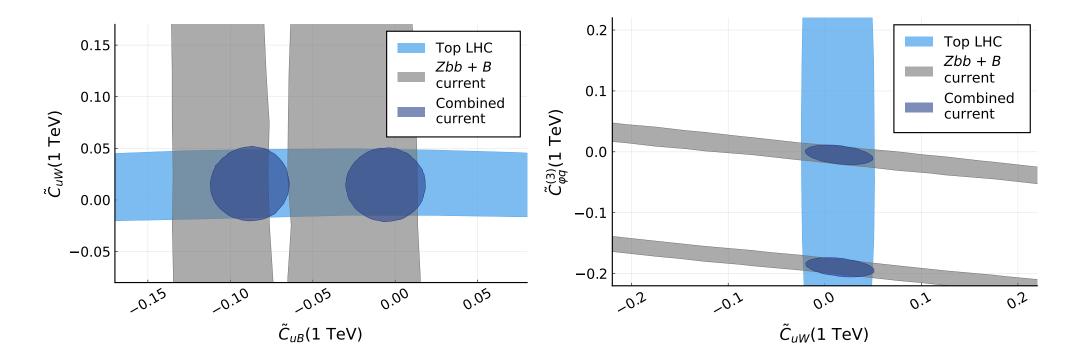



Figure 2: Constraints on SMEFT coefficients \tilde{C}_i in Eq. (??) obtained in a fit to top-quark data in Tab. 1, Zbb data, and B physics data in Tab. ??. Shown are smallest intervals containing 90 % posterior probability (left) and total width of these intervals (right). For the prior we assume a uniform distribution over the interval $-1 \leq \tilde{C}_i \leq 1$. 8 WCs constrained, including 2 sl 4-fermis, $C_{\varphi u}$ still a mess

beauty and top; now

Figure 3: Examples for two-dimensional posterior distributions of SMEFT coefficients \tilde{C}_i in Eq. (??) obtained in a fit to top-quark data (light blue), B physics data (grey) and the combined dataset including Zbb data (blue). Shown are the smallest intervals containing 90 % of the posterior distribution. For the prior we assume a uniform distribution over the interval $-1 \leq \tilde{C}_i \leq 1$. synergies at work

top-b synergies near: w Belle II+HL-LHC

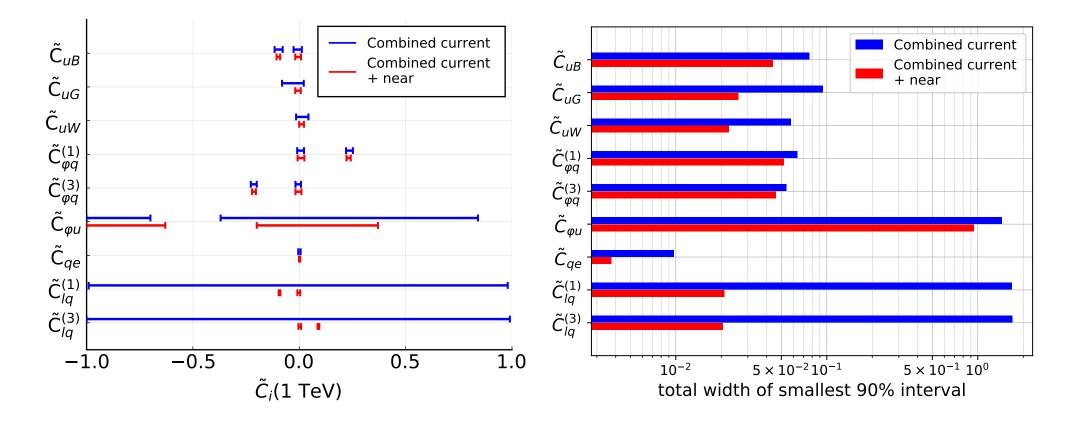
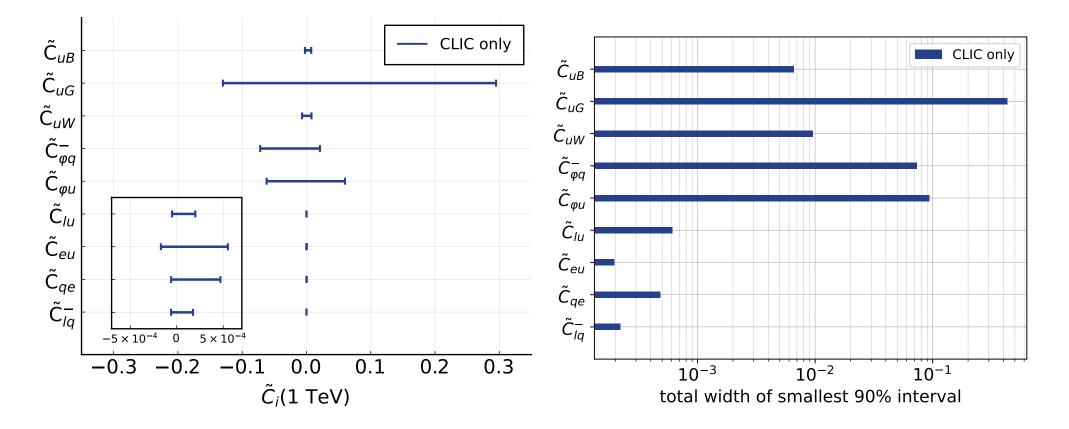



Figure 4: Constraints on coefficients \tilde{C}_i from fits to current top-quark and *B* measurements in Tabs. 1 and ?? (blue) and to current measurements and projections of top-quark and *B* observables in Tabs. 1-?? (red). Shown are the marginalized smallest intervals containing 90 % posterior probability (left) and the total widths of these intervals (right). both C_{la}^{\pm} resolved

Observable	\sqrt{S}	Polarization (e^-, e^+)	Ref. experiment	SM Re
$\sigma_{t\bar{t}}$, A_{FB}	380 GeV	(80%,0)	[?]	[?]
$\sigma_{t\bar{t}}$, A_{FB}	1.4 TeV	(80%,0)	[?]	[?]
$\sigma_{t\bar{t}}$, A_{FB}	3 TeV	(80%,0)	[?]	[?]

Table 2: Observables at different energies and polarizations for $t\bar{t}$ production at CLIC Abramowicz:2018. SM predictions are taken from [?].

top-b synergies tomorrow CLIC only)

Figure 5: Constraints on coefficients \tilde{C}_i from fits to CLIC observables in Tab. 2. Shown are the marginalized smallest intervals containing 90 % posterior probability (left) and the total widths of these intervals (right). 4 sl 4-fermis; electron-specific; only C_{lg}^- and $C_{\varphi q}^-$

top-b synergies tomorrow (Bellell+HL-LHC+CLIC)

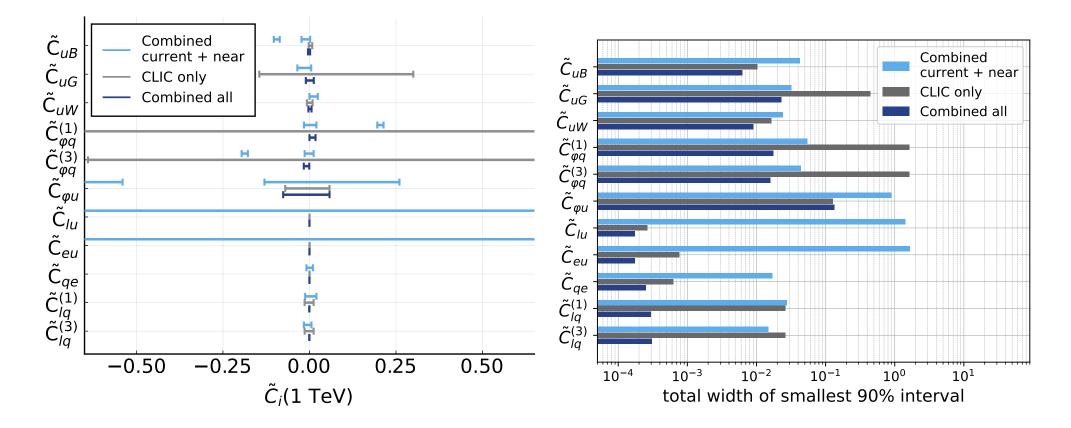


Figure 6: Constraints on coefficients \tilde{C}_i from fits to top-quark and *B* data and near-future projections at HL-LHC and Belle II in Tabs. 1-?? and CLIC future projections in Tab. 2. Shown are the marginalized smallest intervals containing 90 % posterior probability (left) and the total widths of these intervals (right).

- Synergies between beauty and top are reality Fox et al 2007, Bissmann '21, Brugisser '21 and do work!
- semileptonic 4 fermion operators connect top to *b*-anomalies CMS reports constraints on semileptonic four-fermion operators from tops with leptons 2012.04120; weaker than our bounds for C_{qe}, C_{lq}^{-} , but CMS also probes C_{eu}, C_{lu} which is NOW

unconstrained.

- lepton specific fits desirable
- sensitivity to flavor —- exploit more flavor links