E *H* zürich

Epoxy composites for application in superconducting magnets

Pascal Studer Laboratory for Soft Materials

Structure of the presentation

- 1. Motivation
- 2. Engineering approaches
- 3. Examples / research
- 4. Experimental tools for preparing SENB samples
- 5. Conclusion & Outlook

1 Motivation

Superconducting electromagnets

- Particles guided by magnetic fields
 - Electromagnets, Lorentz force
 - Operated in the superconducting state at very low temperatures
 - Superconductor: NbTi / Nb₃Sn
- CHART
 - CH-Accelerator Research & Technology
 - Collaboration CERN,ETH, EPFL

1 Motivation

Requirements for epoxy application in superconducting magnets

- Function of the epoxy:
 - Keeping the superconductors in place
 - Electrical insulation
- Processing requirements
 - No outgassing
 - Long pot-life
- Other requirements
 - Radiation stability
 - Operation at cryogenic temp. (~4 K)

- → high modulus, high fracture toughness
- \rightarrow Electrical insulator
- \rightarrow Cross-linking without emission of volatiles & low volume change
- \rightarrow Low initial viscosity, slow reaction

 \rightarrow matching of thermal expansion coefficients

E *H*zürich

1 - Motivation

The causal chain of why research is needed

- Cooling to cryogenic temperature leads to thermal stresses
- Strong magnetic fields exert forces on conductors

- Approaching 0 K, heat capacity of almost all materials vanishses
- Thus, cracks and yielding result in significant local temperature increases at 4 K

- Above a critical stress, the material releases elastic energy by cracking or localized yielding
- The released energy is dissipated as heat

- Superconductor becomes resistive above a critical temperature and given current density
- Shutdown of the magnet
- Significant cost factor

E *H*zürich

2 – Engineering approach

Possible approaches to solve the problem

- Prevent thermal stresses
- → matching of thermal expansion coefficient to superconductor and metal (outside)

- Increase K_{Ic}
- \rightarrow prevention of cracking
- Control yielding behaviour

- Increase heat capacity
- → prevent temperature increase to above critical temperature
- Increase thermal conductivity
- \rightarrow reduce the peak temperature

- Finding new superconductors with higher critical temperature
- \rightarrow not part of my work

DMATL

D MATL

2 – Engineering handles

Definition of fracture thoughness

- Many engineering materials fail well below their theoretical strength.
- **Irwin** found an approximation for the solution near the crack tip:
- Thus, the stresses at a specific location near the crack tip defined by $\frac{\theta}{\theta}$ and r depend on the factor defined as the stress intensity K_I:
- The singularity at r=0 suggests that all materials fail for a > 0 and σ_□ > 0. However, every material some plasticity or microcracking at the crack tip.

 The critical value of K_I at which failure occurs is an intrinsic material property, the so-called "fracture thoughness" K_{IC}.

$$\sigma_{yy} = \frac{\sigma_{\infty}\sqrt{\pi a}}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right)$$

$$K_I := \sigma_\infty \sqrt{\pi a}$$
$$K_I = \sigma_\infty \sqrt{\pi a} \cdot Y$$

Plastic zone size, dugdale model CTD-101K (LN2): 3.07 microns

Different ideas of epoxy composites for increasing K1c

Particle toughening

- Incorporate hard particles (micro/nano)
 - Yielding of epoxy around particles
 - Crack deflection → increase in crack surface area
- Possible sedimentation (microfillers)
- Possible aggregation (nanofillers/particles)

Rubber toughening

- Incorporate soft but tough particles in epoxy matrix
- Different mechanisms
 - **Matrix crazing** (Formation of many small crazes increases energy-release rate, adhesion dependent, low modulus required to prevent debonding particle/matrix)
 - **Shear yielding**: Interaction between stress fields around particles leads to shear bands, acting as an energy-dissipative mechanism, facilitated by cavitation of the rubber (increasing von Mises stress)
- Not applicable! Below Tg, rubber is not soft

Epoxy with TiO₂ nanoparticles

Preparation procedure

1. Nanoparticle suspension

2. Mix particle suspension with hardener or resin

CHCl₃

- 4. Mix hardener & resin \rightarrow curing

Epoxy with TiO₂ nanoparticles (MY750 resin)

STEM images: Tecnai F30, FEG, 300 kV (ScopeM) TEM samples prepared by ultramicrotomy \rightarrow Applomeration

→ Agglomeration
⇒ Bright Field
Bright Field
3.9, 3.7, 3.4 nm

Thanks to Fabian Gramm (ScopeM, ETHZ)

T *zürich*

Different ideas of epoxy composites for increasing K1c

Crack bridging

- Epoxy-aramide nanofiber composite
- Toughening by fiber bridging over crac
- Process: .
 - 1. Dissolution of aramide in DMSO/KOH/(H2O)→ polyanion solution
 - 2. Precipitation by adding proton donor (H2O
 - 3. Filtration / Drying / Characterization
 - 4. Incorporation into epoxy

Pascal Studer

12.03.2021

11

DMATL.

Results on preparing aramide nanofiber colloidal solutions

0.2% solution

- 0.2% aramide in DMSO/KOH
- KOH pellets
- Stirred 7 days
- Precipitated with proton donor H2O (added 0.5 mL/mg of aramide)
- Formation of a colloidal gel

2% solution

- 2.3% aramide in DMSO/H2O (1:25)
- KOH pellets crushed
- Stirred 9 hours
- Precipitated with proton donor H2O (added 0.5 mL/mg of aramide)
- Forms clumps
- Problem: Not fully dissolved (next slide) & concentration

Preparation times for aramide polyanion solutions

Composition (1:25 H2O/DMSO), KOH	Preparation method (RT)	6h	24h	
1 % aramide sol.	Stirred, 400 rpm			
1 % aramide sol.	Tumbler, ~80 rpm			
2 % aramide sol.	Tumbler, ~50 rpm			

Aramide nanofibers, open questions

- Preparation of dried nanofibers for application from higher concentrated solutions (1%, 2%, 4%,...)
 - What happens when the concentration of proton donor is slowly increased instead of instantaneous mixing?
 - Dilution necessary before precipitation? Influence on microstructure?
 - What would be an appropriate diluent? (aprotic, polar, basic)
 - Acetone, EtOH+KOH, H2O+KOH, ?
- What is the influence of temperature on both aramide dissolution and precipitation?
- Effect of nanofibers in epoxy on pot-life viscosity?
- How do the fibers align during infusion of dense structures?

E *H* zürich

Different ideas of epoxy composites for increasing K_{Ic}

Pre-stressing (internal pressure)

- Idea: incorporate nascent UHMWPE (highly crystalline) particles into epoxy
- After curing, melt the UHMWPE → lower crystallinity → specific volume goes up → prestress closes cracks
- Chain explosion → improved adhesion?

UHMWPE in Epoxy (CTD-101K)

- First trial
 - Simply mixing GUR 4120 (commercial UHMWPE grade) with epoxy, degassing according to standard protocol & curing
 - White layer on top
 - Probably due to trapped air

Second trial

- Mixing GUR with liquid hardener (part B)
- Degassed 10 mBar, 60 °C, 30 min \rightarrow bubbling
- Mixed with other components, degassed, cured, ultrasonic bath 2 min
- Similar result
- Air is entrapped since top level sank

• Third trial

D MATL

- Suspending GUR in ether (lower density \rightarrow sediments)
- Centrifugated, tip sonicated & centrifugated again
- Now cured

3 – Examples & Research

Possible approaches to solve the problem

E *H*zürich

Combined approach: heat capacity & thermal expansion match.

Zirconium tungstate (ZrW₂O₈)

- negative coefficient of thermal expansion ($\alpha = -7.2 * 10^{-6} \text{ K}^{-1}$) of ZRW₂O₈
- \rightarrow overall reduction in thermal expansion coefficient
- → thermal stresses are distributed throughout epoxy rather than on interface superconductor/epoxy/metal

Schematics of Zirconium Tungstate and the RUM mechanism 10.1007/s10853-009-3692-4

+ Gadolinium Oxide (Gd₂O₃) composite

- Gadolinium oxide has anomaly in heat capacity at ~3K → where the magnet is operated
- Cracking and yielding would result in lower local temperature rise

DMATL

EHzürich

Measuring K_{lc} for filled epoxy composites

Single-etch notch bend samples (SENB) → difficult preparation

EHzürich

Measuring K_{lc} for filled epoxy composites

₽

- Device design
 - Controlled force
 - Most parts 3D printed
 - Except force transmitter (CNC)
- In progress...

EHzürich

Conclusion & Outlook, questions

- Further research
 - Explore toughening of epoxy composite with nascent UHMWPE and PTFE
 - Fabricate aramide nanofiber epoxy composite
 - Finish the sample notching device, obtain reliable K_{lc} values
- Thanks
 - André Brem, Bernhard Auchmann and Theo Tervoort for their support
 - Fabian Gramm (ScopeM) for support with TEM imaging
 - Chris for helping with the design of the improved sample notcher

