A New Algorithm for the Alignment of the CLIC BDS

An Update (preliminary results)

Andrea Latina, FNAL

July 19, 2010 - 3rd CLIC-ILC BDS+MDI Meeting

Alignment Procedure

- \bullet With the multipole magnets turned OFF
 - 1) Orbit Steering, 1-to-1
 - 2) Target Dispersion Steering
- \bullet With the multipole magnets turned \mathbf{ON}
 - 3) Beam-based centering of the multipole magnets
 - 4) Target Dispersion Steering + Beta-Beating and Coupling Correction

The Systems of Equations

1) Target Dispersion Steering (step 2)

$$egin{pmatrix} \mathbf{b} \ \mathbf{\omega_1} &\cdot & (oldsymbol{\eta} - oldsymbol{\eta_0}) \ &\mathbf{0} \end{pmatrix} = egin{pmatrix} \mathbf{R} \ \mathbf{\omega_1} &\cdot & \mathbf{D} \ \mathbf{\beta} &\cdot & \mathbf{I} \end{pmatrix} egin{pmatrix} oldsymbol{ heta}_x \ oldsymbol{ heta}_y \end{pmatrix}$$

2) Coupling and Beta-Beating Steering (step 4)

$$egin{pmatrix} \mathbf{b} & \mathbf{k} \ \omega_2 \ \cdot \ (oldsymbol{\eta} - oldsymbol{\eta}_0) \ \omega_3 \ \cdot \ (oldsymbol{eta} - oldsymbol{eta}_0) \ \omega_3 \ \cdot \ \mathbf{c} \ \mathbf{0} \end{pmatrix} = egin{pmatrix} \mathbf{R} \ \omega_2 \ \cdot \ \mathbf{D} \ \omega_3 \ \cdot \ \mathbf{B} \ \omega_3 \ \cdot \ \mathbf{C} \ oldsymbol{eta}_3 \ \cdot \ \mathbf{C} \ oldsymbol{eta} \ \mathbf{b} \end{bmatrix} egin{pmatrix} oldsymbol{ heta}_x \ oldsymbol{\theta}_y \end{pmatrix}$$

There are four free parameters to tune: $|\omega_1, \omega_2, \omega_3 |$ and β :

- the ω -terms, ie. the weights
- the SVD-term β to control and limit the amplitude of the correction

Simulation Setup

- \bullet CLIC BDS, $L^*=3.5~{\rm m}$
- Misalignment 10 μm RMS for:
 - quadrupoles: x and y
 - multipoles: x and y
 - bpms: x and y
- Added two BPMs:
 - one at the IP
 - one 3.5 meters downstream the IP (might this be the same used for the IP-Feedback?)
- Bpm resolutions:
 - 10 nm
- Synrad Emission has been taken into account

 \Rightarrow All simulations have been performed using placet-octave

Parameters Optimization (No Synrad)

• In my previous presentation, I had performed a scan of the weights β , ω_1 , ω_2 and ω_3 at the same time, finding the following resulting beamsizes:

β	bpm res. [nm]	$oldsymbol{\omega}_1$	$oldsymbol{\omega}_2$	$oldsymbol{\omega}_3$	vertical beam size @ IP [nm]
0.85	10	0.14	1.95	1.85	7.6
5.25	100	3.95	0.65	140.0	10.0

- \Rightarrow Best final emittance was 7.6 nm
 - Now, I have rerun an optimization of these parameters, for different β , in two phases
 - 1) β fixed, optimization of ω_1
 - 2) β fixed, optimization of ω_2 and ω_3
 - \bullet Then I have fit the resulting vertical beamsize to find the optimal β
- \Rightarrow Results are in the followind slide

Parameters Optimization (No Synrad)

 \bullet Each point is the average of 100 seeds; $\sigma_{\rm bpm}=10~{\rm nm}$

 \Rightarrow The minimum is for $\beta=11.45$ at $\boxed{\sigma_y=3.49}$ nm

 \Rightarrow The omegas are: $\omega_1=9.5$, $\omega_2=1.0$, $\omega_3=1370.0$

Results for 1000 seeds (No Synrad)

• Histograms of final vertical beamsizes for a 1000 seeds, $\sigma_{\rm bpm}=10~{\rm nm}$

- Final beamsize after each stage of optimization:
 - Orbit Correction = 455.2 nm
 - Target Dispersion Steering = 102.0 nm
 - Full Alignment Procedure = 4.38 nm

Results for 1000 seeds (No Synrad)

• Histograms of final horizontal beamsizes for a 1000 seeds, $\sigma_{\rm bpm}=10~{\rm nm}$

• Final beamsize after each stage of optimization:

- Orbit Correction = 2.5 mm
- Target Dispersion Steering = 392.0 nm
- Full Alignment Procedure = 40.0 nm

Results for 1000 seeds (No Synrad)

• Average final vertical emittance along the line for a 1000 seeds, $\sigma_{\rm bpm}=10~{\rm nm}$

- Final emittances after each stage of optimization:
 - Orbit Correction = 28.7 μm
 - Target Dispersion Steering = 2.6 $\mu {\rm m}$
 - Full Alignment Procedure = 130.6 nm

Synchrotron Radiation Emission

- I have used the parameters β , ω_1 , ω_2 and ω_3 previously found
- Synchotron radiation emission has been taken into account for all magnets
- Precautions to stabilize the simulation
 - \Rightarrow increase the statistics: bunches of 100'000 particles have been simulated
 - \Rightarrow improve the tracking: sbends and multipoles have been simulated in thin lens approximation: 50 thin lenses per magnet (the default, for multipoles, is 5)
- ⇒ No tracking of the core: each single step of the simulation is based on 100'000 particle bunches (very cpu intensive, computing time is about 2 days per seed)

Results with Synrad Emission

 \bullet Histograms of final vertical beamsizes for a 500 seeds, $\sigma_{\rm bpm}=10~{\rm nm}$

- Final emittances after each stage of optimization:
 - Orbit Correction = 426.4 nm
 - Target Dispersion Steering = 131.3 nm
 - Full Alignment Procedure = 23.4 nm

Results with Synrad Emission

• Histograms of final horizontal beamsizes for a 500 seeds, $\sigma_{\rm bpm}=10~{\rm nm}$

- Final emittances after each stage of optimization:
 - Orbit Correction = 2630.1 nm
 - Target Dispersion Steering = 607.4 nm
 - Full Alignment Procedure = 1256.0 nm

Conclusions and Next Steps

Results with synchrotron radiation emission have been presented.

Convergence is 100% also when synrad emission is taken into account

Average final vertical beamsize is 23 nm, when synrad is considered.

Results are promising, but something more needs to be understood: in presence of synrad, the X axis converges to ${\approx}1250$ nm beamsize

Next steps:

- Misaligned multipoles induce: 1) a dipole kick to the beam centroid; 2) a quadrupolar kick
- Multipoles are aligned using a technique similar to quad-shunting (i.e. beam centroid measurement)
 - \Rightarrow this corrects only for the dipole kick, but not for the quadrupolar component of the kick
 - \Rightarrow taking into account a beamsize measurements might help to correct for the quadrupolar kick