

Summary Report:

WP 5 - Valorization

Institute for Entrepreneurship and Innovation

Vienna University of Economics and Innovation Welthandelsplatz 1, Building D5 1020 Vienna, Austria

Assoc. Prof. Dr. Peter Keinz

+43-1-313 36-5979 peter.keinz@wu.ac.at wu.ac.at/entrep

EASITrain | Work package overview

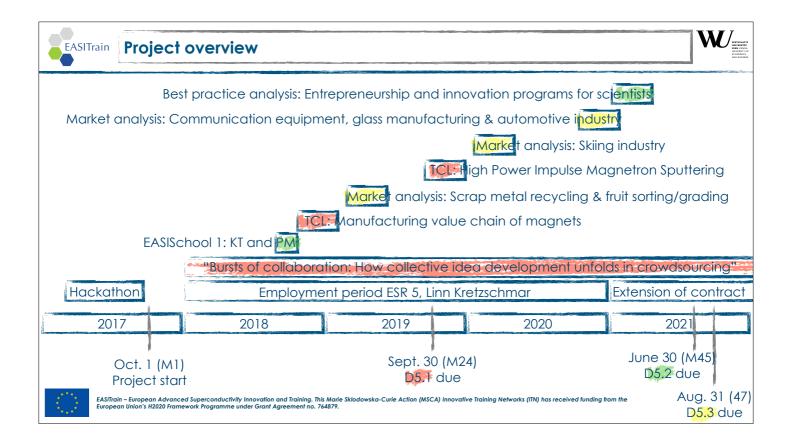
Work package number:

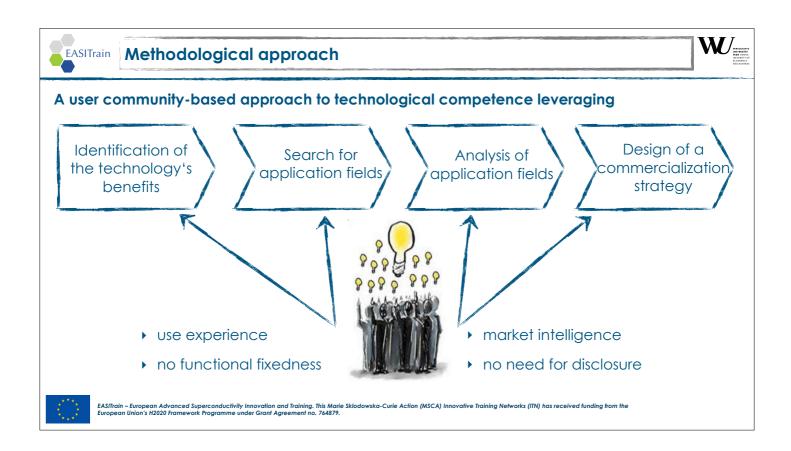
▶ WP5

Work package title:

Valorization

Lead beneficiary:


- WU Vienna
- ▶ WP leader: Peter Keinz
- Deputy: Johannes Gutleber
- ▶ ESR 5: Linn Kretzschmar


Description of work:

- ▶ Develop a catalogue of feasible and viable market opportunities for EASITrain technologies, detail market entry strategies in close cooperation with industrial partners and with IP management support of CERN.
- ▶ To cover the demand for training of high-qualified young engineers in the field CERN, TUW, UGENOA, WUW and other participants will develop a curriculum for an interdisciplinary doctoral program on applied superconductivity that in addition to strong technical training will contain courses on project management, IP systems, entrepreneurship and innovation management.

Deliverables:

- **D5.1:** Impact potentials of EASITrain research on society and industry
- D5.2: Reference curriculum for PhD program on applied superconductivity
- **D5.3:** Technological Competence Leveraging roadmap for superconductivity applications

EASITrain Project structure

Semester-long projects with BSc and MSc student teams, led by Linn Kretzschmar (ESR 5)

Kick-off meeting

- Transfer object
- negative list of interviewees
- strategic fit criteria

Steering board meeting

- Presentations of top applications
- Analysis of top applications

Final meeting

- Presentation market and competitor analysis
- Description of business model

2 weeks:

Identification of benefits

3 weeks:

Market and competitor analysis

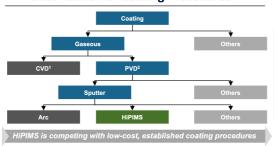
6 weeks:

Application discovery

3 weeks:

Business modeling

ASITirain – European Advanced Superconductivity Innovation and Training, This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's 14202b Training work Programme under Grant Agreement, 7,64879.


EASITrair

EASITrain | Example: Outcome HiPIMS analysis

The benefits of "high power impulse magnetron sputtering"

Classification of Coating Procedures

Comparison of Coating Procedures

	Arc	CVD1	HIPIMS
Surface	Droplets	Rough	Smooth
Coating Temperature C*	500	1000	500
Max Layer Thickness	4 um	10-15 um	12 um
Residual coating stress	High compress	Tensile	Low compress
Ductility of layer	High	Low	Very high
Ease of Production	Yes	No	Yes
Flexibility	Low	None	High

Advantages

Possibility to coat complex 3D-structures

Thinner, more precise coatings

Longer lasting coatings

Example: Outcome HiPIMS analysis

Potential application fields

Gears

Plain bearings

Ball bearings

- Aerospace Industry
- **(3)**

Medical Industry

- Drones
 - Satellites
- Implants Prostheses & Stents
- Catheters

Electronic Devices

Electronics (e.g. chips)

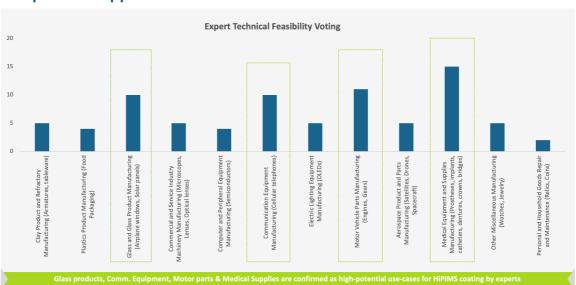
- ► Shoes Gloves
- Active wear
- Solar panels
- Optical glass

Other Industries

Sports Equipment

- Drill heads (oil & tunnel drilling)
- Food manufacturing machines
- Helmets Sport balls
- Climbing equipment
- Skiing equipment
- Gripper
- Stamping tools
- Cable car drive pulleys

Engineering



EASITrain | Example: Outcome HiPIMS analysis

Evaluation of potential application fields

Example: Outcome HiPIMS analysis

Evaluation of potential application fields

- · Coating of frames of smart devices is emerging application field of HiPIMS
- · offers outstanding advantages compared to conventional PVD coating methods (against corrosion, sticking and wear)
- · Major mobile electronic production firms (e.g. Apple, Samsung) increased their R&D efforts
- Potential to expand to further use-cases (e.g. luxury products)

Apple's IPhone 12 Pro Gold is less prone to fingerprints & more durable due to HiPIMS coating

Source: Technavio (2021)

EASTrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the

EASITrain | Example: Outcome HiPIMS analysis

Evaluation of potential application fields

- Currently: HiPIMS Coating of architectural glass due to thermal insulation properties
- Especially solar panels and windows are promising application fields
 - Limits stress from environmental influences
- Fastest-growing glass products:
 - solar control glass (low-emissivity glass, reflective glass and "smart" glass)
 - heads-up display windscreens; self-cleaning glass & ultraclear glass
- HiPIMS coating allows glass to be curved for consumer electronics (smartphones, tablets, ...)

Curved ITO coating on glass following a tempering and bending process at 650 °C (Fraunhofer IST)

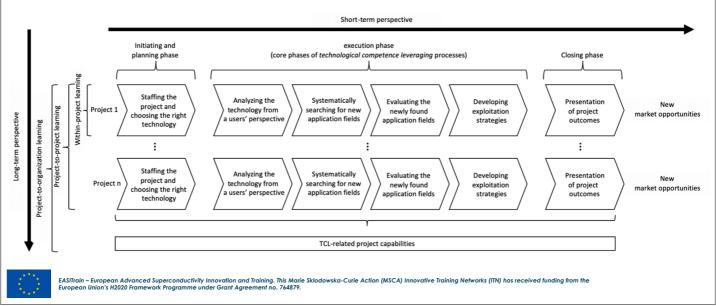
Benefits of curved displays

Mana adalbia in ambiana ilai

USD 115.8 billion*

*Global flat glass market 2019

Sources: First Research Industry Profiles (2019): Glass & Glass Product Manufacturing; Fraunhofer IST (2017)



Scientifically relevant insights

Research question(s): What are the short-term and long-term outcomes of TCL projects conducted by innovation intermediaries? What barriers to the success of TCL projects do exist?

EASITrain | Scientifically relevant insights

Based on 10 projects from 3 different Marie Curie ITNs, short- and long-term outcomes were analyzed in the course of a comparative, multiple case study.

	Short-term	Long-term
Outcomes	 average of 25 application fields identified technology roadmaps used to attract R&D partners from industry and to apply for future funding 	 development of TCL-related methodological competences increased motivation and capability to engage in boundary-spanning, inter-disciplinary projects
Challenges	 unclear project goals and a lack of insight into the method Lack of company-internal perspective (e.g., specific KT policies, etc.) 	 Project owners without management responsibilities

List of publications (I)

Peer-reviewed journal articles:

▶ Keinz, P., & Marhold, K. (2021). Technological competence leveraging projects via intermediaries: Viable means to outbound open innovation and mediated capability building?. *International Journal of Project Management*, 39(2), 196-208.

Book chapters:

- ▶ Kretzschmar, L. (2020). Leveraging the Economic Potential of FCC's Technologies and Processes. In: The Economics of Big Science. Essays by Leading Scientists and Policymakers; Beck, H.P., Charitos, P. (Eds.), 85-91. Switzerland: Springer, Cham.
- ▶ Keinz, P., Marhold, K., & Fell, J. (2021). Applying a Systematic Technology Competence Leveraging Approach in Knowledge Transfer of Big Science. In: Economic & Societal Impact of Big Science, Li-Ying, J., Charitos, P. (Eds.), forthcoming.

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879.

EASITrain List of publications (II)

Project reports:

- Kretzschmar, L., Mehner, B., Hausberger, M., Ledermüller, F., Mayrhofer, F., Schreiber, D., & Gutleber, J. (2019). Manufacturing process of superconducting magnets: Analysis of manufacturing chain technologies for market-oriented industries (1.0). Zenodo. https://doi.org/10.5281/zenodo.2579834
- ▶ Brzobohaty, L., Habernig, S., Moravec, P., Pably, M., Schürz, T., Kretzschmar, L., & Quach Tuong-Vi, S. (2019). Analysis of potential markets for using technologies in the superconducting magnet value chain (1.0). Zenodo. https://doi.org/10.5281/zenodo.3362855
- ▶ Keinz, P., Kretzschmar, L., & Quach, Tuong-Vi S.. (2020). High-Power Impulse Magnetron Sputtering (HiPIMS): Assessing the innovation potential using the Technological Competence Leveraging (TCL) method (1.0). Zenodo. https://doi.org/10.5281/zenodo.3744821
- Quach S., Fabian C., Kretzschmar L., Hütteneder M., Schmidle T., Tanson J., Schmidt M., & Deutschbauer S. (2021). Evaluation of the market potential of HiPIMS and advanced coating technologies (1.0). Zenodo. https://doi.org/10.5281/zenodo.4551291

List of publications (III)

Talks:

- ▶ Kretzschmar, L. (2019). Leveraging the economic potential of FCC's technologies and processes. Future Circular Collider Week (FCC), Brussels, Belgien, 24.06.-28.06.
- ▶ Kretzschmar, L. (2021). Bridging research & industry: Creating value from FCC's technologies for the general public. Future Circular Collider Week, Genf, Schweiz, 28.06.-02.07.

Posters:

▶ Kretzschmar, L. (2019). Economic Analysis of superconducting magnet production. Future Circular Collider Week (FCC), Brussels, Belgien, 24.06.-28.06.

EASITrain – European Advanced Superconductivity Innovation and Training, This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879.

Thank you very much for your attention

and

this interesting collaboration!

Institute for Entrepreneurship and Innovation

Vienna University of Economics and Innovation Welthandelsplatz 1, Building D5 1020 Vienna, Austria

Assoc. Prof. Dr. Peter Keinz

+43-1-313 36-5979 peter.keinz@wu.ac.at wu.ac.at/entrep

