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Introduction to the Monte Carlo simulation
of radiation transport

- The transport equation

- The Monte Carlo method

- Statistical uncertainties

- Advantages and limitations of the method
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The radiation transport problem

Radiation Propagation

. Detection
source In matter
Photons, _ | |
Leptons (e, ut, T, V), Arbitrary geometry, Measure/estimate/score:
:_cl)?]zr?zn %n P 2ee), Various bodies, - Energy-angle particle specitra,
Radioactive sources materials, compounds. - Deposited energy,

- Material damage,
- Biological effects,
Radiation-matter interaction, - Radioactive inventories...

Cosmic rays,

Colliding particle beams,

Synchrotron radiation, :
Secondary particles,

Particle shower,
“Monoenergetic’/Spectral : o
Material activation,

Energies: Magnetic and electric fields...

- keV-PeV,
- down to thermal energies for neutrons.
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Terminology

- Radiation field: an ensemble of particles, possibly of different species (y,e*,p,n,...),
each at a position r moving with energy E along a direction Q=(6,¢) with polar and
azimuthal angles 6 and ¢.

» Every particle species can undergo a series of interaction mechanisms, each
characterised by a differential cross section:  d%¢ Noount

dQ dWw | Jine| A2 AW
* The integrated cross section o (area) measures the likelihood of the interaction.

- Consider a medium with N scattering centers per unit volume.

* No gives the probability of interaction per unit path length, AKA
macroscopic cross section.

 1/(No) gives the mean free path or scattering dE
length between consecutive interactions. Jine
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The transport equation
* Let ny(r,E,Q,t=0) be the particle density at the radiation source with energy E, moving
In a direction Q.

* The transport equation determines the radiation field (consisting of several particle
species I, with different energies E, and different directions Q) at another position r at
a later time t by looking at the particle balance in a small volume V (with surface S)

on;(r, E,Q,t .
/ dr 4 (, ) fé dA j(r,E,Q,t)-a (unscattered particles)
v ot S
- N/ dr ni(r, E,Q,t)v(E)o(E) (particles scattered out)
|4
d : :
+ N / dr / dE’ / dQY n;(r, E", Q' t)v(E") . ngwu (particles scattered in)

+N/ dr/dE’/dQ’ an r, B, t)u(E') Q,,Ze;[;,, (production of secondaries)

+ / dP Qo1 H; 3, 1) (source)
\%4

Notation: Q" is a direction such that scattering angles Q’ bring it to Q.
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Solution strategies

 Transport equation to be solved for an arbitrary source density ny(r,E,Q,t), an arbitrary
geometry, and realistic interaction cross sections.

- Solution strategies:

 Analytical: only for restricted geometries and restricted interaction models.

» Spectral: exploit symmetries and expand in appropriate basis functions. Only for restricted cases.
* Numerical quadrature integration: general, but inefficient for high-dimensional integrals.
* Monte Carlo method: general, efficient, can treat arbitrary radiation fields and geometries.

« Monte Carlo is a stochastic method, exploiting random numbers to:

« Simulate an ensemble of particle histories governed by known interaction cross sections.
« Track them in arbitrary geometries.

« Accumulate contribution of each track to statistical estimator of the desired physical observables.
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The origins

B | Richard Feynman |
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Probability and statistics toolkit for
Monte Carlo simulations of radiation transport
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Random variables

 Arandom variable X describes the outcome of a process whose value we cannot predict
with certainty, but nevertheless we know:
* Its possible values.
« How likely each value is, governed by the probability density function (PDF), p(x).

Properties of p(x):
» Positive defined: p(x)>=0 for all x
- Unit-normalized: Jdx p(x) = 1
* Integral gives probability: Iab dx p(x) = P(a<x<b)

o0
The expectation value (X) = / dx zp(x) measures the average value of X.

—OC

The variance g2 measures the square deviation from <X>.
2 2 2 2
0" = (X - (X)) =...={X)" = (X7)
The standard deviation o measures the average deviation from <X>.
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Relevant examples

Uniform distribution

T - T
; j |
—1 —0& 0 0.5 1.5
x

Basic PDF for sampling

& FLUKA

Exponential
2 T 1 T T
5 : P = —_—

PDF from which particle steps are sampled
(derivation in additional slides)
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Appears in Central Limit
Theorem below




Generation of homogeneously distributed random numbers

 For reasons of reproducibility, we use pseudo-random numbers: uniformly distributed
numbers between 0 and 1 obtained from a deterministic algorithm (not random!) which pass
all tests of randomness.

- Needs one/several seed values, X,, from which the sequence starts: X,,X3,X,,...
- Different seed values yield different random number sequences.

- E.g.: linear congruence X, ., = mod(aX, +c,m), with carefully chosen a,c,m

* The random number generator used in FLUKA is RM64, based on an algorithm by G.
Marsaglia et al. Stat. Probabil. Lett. 66 183-187 (2004) and 8 35-39 (1990).

- Based on a lagged Fibonacci generator: X, ,=mod(X, ,@X_,,m), where @ Is +,-,..., p=97,
g=33.

* The state of the random-number generator requires 97 values.
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The state of the random-number generator in FLUKA

» At the end of each FLUKA cycle you will see files called ran*

* These files contain the values of the 97 seeds of RM64
In hexadecimal:

* The initial seed is controlled by the RANDOMI Ze card

* In Flair (more in the next lecture):

® RANDOMIZ Unit: 01 v Seed:
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DF75DC 0 181CD 3039B6698493
45 5B24BEE7E3FE70591

E14FD41E3FD9F96219018D003F631A592282EC723FDABC5431E61BA23FD52AA5
7616746F3FE9D8DDE961FB573FEOAF4A76A64FDA3SFDASA3CF23CECB23FD674B4
FD5594003F55F406927DD5003F857D81A39916283FBFC742F7E490E43FEBB1E6G
259F67B83FBB498EE57697063FDB4EFO7B77284E3FE947FB2A1395983FBC478B
5A700E083FC2BC89BC1415643FCF651D44DE10683FE774B4BO5EC8203FDGEBSC
506530043FD2F20440C197943FDEGE2DF61740483FED57CA17FOCAF23FEO71D8
F7A086823FD2179A6266CD843FCC5BCOD122239C3FDD1DOCB2BIDBES3FEOCCBS
CDODOABC3FCB35F570DCF1C43FD85E2BF75878B73FE7E37375FC2C033FE363F6
978EA48C3FDECEOE4CC18DFC3FDFBE33EF6390033FE828BE159746663FE03204
69F8C8603FE57BA36241A1443FECD93B6B0465603F90928EED43E1083FDB7A81
87BAFC6F3FEFCD9852BE02233FEE1427AA841B4AC3FEE7ED6DESF38F13FEQ7474
37BFFF503FB360BDE437AA703FB7il14FB27612303FD353CC39B8CODF3FEO1AOL
CAD649303FD5067075EA51A23FE9CO60COBE59DB3FE2EA4DGECI86BO3FC02303
D36EAA263FE7A2ECCEG7OFE73FE76D264C7667AC3FE27DES82628D193FED3B4B
27DA6FO83FEBC43C28E2F8063FEDIEF7287387163FD13F78E68DFCAG3FEO27ES
B9626D253FEC7BC3 73A7D443FE8595C6C9826173FEFEDED770937783FBAB23C
144DCB3E3FD4F440A34B92183FC7B43DB68C50D43FDODE1510A26DC43FCC4C4A
E04497293FE3CCFC3D4D61D23FD691F6C50DESBC3FD5FF61642614EC3FD2EC2C
858D96473FECS5DEFA4F1ED703FD2CD011925A4883FD5CBF76BOC4BBD3FEL8179
5C3902BO3FC1C1A5 FE047CC3FC61342AC78FEEB3FEA4A14A75EED3A3FDF2F7B
3B2COAO3FE43F09 5ECCF4C3FC76797FBBA40D33FE9A1119FAA856D3FEGBAS3
69874A403FB6157F5AD63DC13FEC389DBO5DIFES3FE280A110A453703FA3C34E
6D56C5A43FD71B005B72FB5C3FE74BES AB682DD3FE73982 9F3D4EG3FE533A3
20505BB43FD2FD159B2AF2E43FDCEC89F2F9B1A33FE3AB47 AE185F03FCBE666
14842CCE3FD618F9




Sampling from arbitrary distributions

* In Monte Carlo we sample: step lengths, event type, energy losses, deflections...
- Sampling: generation of random values according to a given distribution.

* Fundamental problem: we know how to sample uniformly distributed values, but
how do we sample from arbitrary distributions?

fx)
* There's a whole array of sampling

techniques:
* Inverse sampling
* Rejection sampling
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Basic Monte Carlo simulation algorithm

Loop over n, primary events:

Initialize source particle position and momentum.

If particle is in vacuum, advance it to next material boundary.
Determine total interaction cross section at present energy and material: o
Evaluate the mean free path to the next interaction: A =1/(No)

Sample step length to next interaction from p(s) = (1/A\) e

Decide nature of interaction: P,=0o,/ 0, i=1,2,....n

N o O R~ Wb

Sample energy loss (and/or change of direction) from differential cross section for the
selected interaction mechanism i. Update energy and direction of motion.

o

Add generated secondary particles to the stack if any.
9. Score contribution of the track/event to the desired physical observables.

10. Go to 2 unless:
- Particle energy drops below user preset threshold (see lecture on Friday)
- Particle exits the geometry
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Example: 100-MeV proton beam on water

10 simulated proton trajectories in water (E,=100 MeV):
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Statistical uncertainties

- Results from Monte Carlo simulations are affected by statistical uncertainty
- How does it depend on the number of simulated primary particles?
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Example: 100-MeV proton beam on water

100 primaries
0.0006 | | : | | ;

0.0005

0.0004

0.0003

0.0002

Dose (GeV/g/primary)

0.0001 prprpHmEs

Depth (cm)
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Example: 100-MeV proton beam on water

0.0006

0.0005

0.0004

0.0003

0.0002

Dose (GeV/g/primary)

400 primaries

0.0001 jgmem

Introduction to Monte Carlo
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Example: 100-MeV proton beam on water

1600 primaries
0.0006 ! : : : : ;

0.0005
* Results from MC simulations are affected

by statistical uncertainty 0.0004

0.0003

» The larger the number of primaries,
the smaller the error bars.

0.0002

Dose (GeV/g/primary)

O 1 2 3 4 5 6 7 8
Depth (cm)
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A numerical experiment

* Imagine a source emitting particles with a flat energy distribution which deposit all
their energy in a detector.

- Let the detector/estimator measure the average deposited energy:

p(E) 1t
Source

» E

0 1
« What can one say about the estimated <E>?
* Itis a random variable
* As such, it follows a certain distribution.
« Which one? It depends on the number of events.

Introduction to Monte Carlo



Distribution of <E> if source emits N=1 particle

Distribution <E> for 1 event

P(E) 14 1.2
1
0*8 ............................................................................................................................
E
0 1 ~
ﬂ Q0 B o
L
o
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Distribution of <E> if source emits N=2 particles

Distribution <E> for 2 events

»

p(E)
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Distribution of <E> if source emits N=3 particles

Distribution <E> for 3 events

p(E) 14 2.5
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Distribution of <E> if source emits N=10 particles

Distribution <E> for 10 events

»

p(E)
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Distribution of <E>

Distribution <E> for 10 events

* For sufficiently large number of contributions,
the estimate mean <E> follows a Gaussian! 4

* The standard deviation (~width) of this
Gaussian is a measure of the statistical 3
uncertainty when estimating <g>.

~ 2.5
g
* The standard deviation (statistical 2 2
uncertainty) decreases with the number of
contributions N 1.5
1
* We now check how the statistical uncertainty
drops with N 0.5
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Standard deviation

Width of the Gaussian

»

sigmassqrt{N) —

p(E) 4 1 ' - " Fitted sigma *

v
Standard deviation

Source

|
1 10 100

* For a very large number of samples the detector would
yield the estimated mean <E>=1/2 with sigma=0.

- Statistical uncertainty decreases with the number of
contributions N as 1/sqrt(N).

g_%FLUKA Introduction to Monte Carlo



Central Limit Theorem

* In the numerical experiment above, the “detector” plays the role of the expectation value of
any physical observable estimated a la Monte Carlo.

« If the estimator receives a sufficiently large number of contributions N, the distribution of its
expectation value tends to a Gaussian centered around the true expectation value, with
standard deviation that goes like 1/sart(N). That is, the statistical uncertainty of a MC
estimate reduces as 1/sqgrt(N) with the number of primary events.

 This is essentially the Central Limit Theorem.

* Note that:
* When doing a Monte Carlo simulation, quoting a result without a measure of the statistical uncertainty
IS meaningless.

» Quoting a result obtained with a low number of contributions is dangerous: the distribution of the
mean may still be far from the Gaussian centered around the actual expectation value!
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Single-history vs batch statistics

* In FLUKA, primaries are grouped in cycles.

* When you initiate a FLUKA run, you will indicate:
* The number N of cycles.
* The number n, of primaries per cycle

 The variance of a scored observable X is evaluated via

2 1 ZlN n;X; B Zrl N; X;
N N

<X> N _1

2

where: i
* nis the total number of primaries, X

* X Is the average of the i-th cycle: X, = Z”i ij

j=1 ”_.
* In the limit N=n and n=1 the expression applies to single-history statistics.

« NOTE: if you run just one cycle (N=1), the above expression cannot be evaluated and FLUKA will
return 100% uncertainty.
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Recommendations

* Ensure you have 5-10 cycles of comparable size

- Remember that the variance itself is a random variable. E.g., runs with the same
number of primaries but different random seeds will give different values of the
variance. The larger the number of primaries, the smaller the difference (MC results

for different seeds converge to the same value).

* |t is wise to examine how convergence Is attained: verify that error bars drop with
1/sgrt(N). Sudden/isolated spikes indicate poor sampling in some corner of phase

space (see Biasing lecture).

* |t is often a good idea to plot 2D and 3D distributions. The human eye is a good tool
for judging statistical convergence of 2D/3D estimators!
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Statistical uncertainty

Statistical errors, due to sampling (in)efficiency

Relative error Quality of Tally (from an old version of the MCNP Manual)
50 to 100% Garbage
20 to 50% Factor of a few
10 to 20% Questionable
< 10% Generally reliable

* The MCNP guideline is based on experience, not on a mathematical proof. But it has been
generally confirmed also working with other codes.

- Small penetrations and cracks in a geometry are very difficult to handle by MC, because
the “detector” is too small and too few non-zero contributions can be sampled, even by
biasing.
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Assumptions, limitations, and
sources of uncertainty
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Assumptions and limitations

Materials are static, homogeneous, and isotropic.

Radiation transport is treated as a Markovian process: the fate of a particle depends
only on its actual state, and not on its history.

Material properties are not affected by previous histories.

Particles follow trajectories and interact with individual atoms/electrons/nuclei.

* A general order-of-magnitude measure: the particle’s de Broglie wavelength must be small
compared to typical interatomic distances (Angstroem).
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Validity of the trajectory picture

« De Broglie wavelength:
hc

\/EK(EK + 2m002)

AdB =

where E, is the particle’s kinetic energy, m, is
Its rest mass, h is the Planck constant, and c
IS the speed of light.

De Broglie wavelength (A)

« Typical interatomic distances are in the order
of ~Angstroem.

- E.g.: MC simulation of electron transport at 16;
energies much below 100 eV is questionable. o

|||| 11 ||||||l 11 |||||Jl L1 ||||||l L1 ||||J|l L1 |l||||| 11 JllllT
10° 10* 10° 10° 107 10® 107
Kinetic energy (eV)

« The assumption of scattering on single target
puts a lower energy bound on applicability of
MC
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Systematic uncertainties

 We have discussed statistical uncertainties above.

« That’s only part of the uncertainty in the results of any MC simulation. The rest are
systematic uncertainties, due to:

» Adopted physics models: different codes are based on different physics models. Some models are
better than others. Some models are better in a certain energy range. Model quality is best shown by
benchmarks at the microscopic level (e.g. thin targets)

» Transport algorithm: due to imperfect algorithms, e.g., energy deposited in the middle of a step*,
inaccurate path length correction for multiple scattering*, missing correction for cross section and
dE/dx change over a step*, etc. Algorithm quality is best shown by benchmarks at the macroscopic
level (thick targets, complex geometries)

» Cross-section data uncertainty: an error of 10% in the absorption cross section can lead to an error
of a factor 2.8 in the effectiveness of a thick shielding wall (10 attenuation lengths). Results can never
be better than allowed by available experimental data

* Not in FLUKA!
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Systematic errors due to incomplete knowledge

« Systematic errors due to incomplete knowledge:

* material composition not always well known. E.g. concrete/soil composition (how much water
content? Can be critical)

* beam losses: most of the time these can only be guessed. Close interaction with engineers and
designers is needed.

 presence of additional material, not well defined (cables, supports...)
* |Is it worth to do a very detailed simulation when some parameters are unknown or badly known?

« Systematic errors due to simplification:

« Geometries that cannot be reproduced exactly (or would require too much effort)
 Air contains humidity and pollutants, has a density variable with pressure
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Errors, bugs, mistakes

» Monte Carlo codes can contain bugs:
* Physics bugs
* Programming bugs (as in any other software, of course)

» User mistakes:
* mistyping the input: Flair is excellent at checking, but the final responsibility is on the user
 error in user code: use the built-in features as much as possible!
e Wwrong units
* wrong normalization: quite common
* unfair biasing: energy/space cuts cannot be avoided, but must be done with much care
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Summary

- Radiation transport is governed by the transport equation, a non-trivial integro-
differential equation.

* The Monte Carlo method (exploiting pseudo-random numbers to simulate
stochastic processes) is an expedient way to solve it for arbitrary radiation sources
and material geometries.

* The pseudo-random number generator is at the core of the algorithm.

Basic flow of a MC simulation.

Results of MC simulations are affected by statistical uncertainty.

The statistical uncertainty scales with the number of primary particles N as 1/sqrt(N)

FLUKA expects a number of cycles and a number of primaries/cycle

Basic assumptions and limitations
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Additional material
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The mean free path and its distribution

Let n particles per unit time and surface impinge normally on a thin material slab of width ds
with a density of N scattering centers per unit volume, each having a cross sectional area

.

Number of particles that interacted: dn =n No ds. —>|-e_

The interaction probability in ds: dn/n=N o ds > ® >

Let p(s) be the distribution of path lengths to the next interaction. > @ I% >

The probability that the next interaction is within ds of s is T > @ > n—dn
p(s) =[ 1 - [p*ds’p(s) ] (N o) = p(s’) (N o) ds’ > ® >

The solution of this diff eq is >—® |dn=nMNods
p(s) = (N o) e=No) >'o >

Thus, the path length to the next interaction follows an ds

exponential distribution. The average distance to the next interaction is:
<s>=1/(N o) = A,

l.e., we recover the expression of the mean free path given above.
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