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Outline of the talk

1 Deep Neural Networks and Floating-Point

2 FP Error Analysis for DNNs

3 A Computer Arithmetic Look at DNNs

4 Making Things Concrete

5 Opening Up
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Inference with Deep Neural Networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

“Cat”

Input is fed flattened into the DNN

The DNN’s hidden layers mix the different input data

An output layer yields the result of the DNN

R DNNs are huge:

Imagenet has 27 million parameters

BERT has 345 million parameters
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High-Performance Computing to the Rescue

DNNs are not a new invention
R Called Perceptrons in the 1960s

DNNs are an extremely performance hungry application
R 345 million parameters for Language Processing

Real-Time Language Processing ?

High-Performance Computing (HPC) is the enabler of DNNs

Modern GPU: about 120 · 1012 FLOPS per second
Exascale HPC Supercomputers: up to 1018 FLOPS per second

HPC is centered around Floating-Point (FP) Arithmetic
R FP: a memory-efficient representation of the reals
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Floating-Point Numbers

qe = 10−19 × 1.602176634 = βE ×m

Floating-Point (FP) numbers exist in different radices β
R β = 2 or β = 10 are common choices

The exponent E gives the order of magnitude

The significand 1 ≤ |m| < β provides granularity
R m is a scaled integer m = βk−1M, M ∈ Z

The number k of digits in M is called the precision
R Precision k is fixed for a FP format
R Finite representation of real numbers
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Computing Right with Error

Error is part of FP Arithmetic

Example: x = 1.0 ∈ F, y = 3.0 ∈ F, x/y = 1/3 6∈ F
Any finite representation of the real numbers needs rounding.
The maximum round-off error depends on the FP precision k.

Round-off Error is what makes FP Arithmetic Weird

Associativity: x ⊕ (y ⊕ z) 6= (x ⊕ y)⊕ z
Absorption:

(
1⊕ 1017

)
	 1017 = 0

Cancellation: x , y have both some accuracy, x 	 y may be plain wrong

A FP-based HPC machine executing 1015 FLOPS per second. . .
. . . commits 1015 errors per second!

These trillions of errors combine to a global error. . .
. . . in non-linear, intricate ways.

How to Compute Right with Error ?
“Crossing fingers”
Manual error analysis
Static analysis
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FP tradeoff

Precision
Performance

Cost $$$

Risks
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FP tradeoff

Precision
Performance

Cost $$$

Risks

28 soldiers dead

$500M lost
Natural catastrophe unpredicted
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FP tradeoff

Precision
Performance

Compute precision

Error

ideal precision

max error
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FP tradeoff

Precision

Performance

Error

max error

minimally  
safe precision

“sweet spot”

Compute precision

ideal precision
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DNNs and Precision

Literature Survey on DNNs and Precision

Micikevicius, Narang et al. “Mixed precision training”:
k = 16 bits is enough

Microsoft Brainwave Project:
k = 11 bits is enough

Agrawal, Mueller et al. “Dlfloat: a 16-b floating-point. . . ”:
k = 9 bits is enough

Henry, Tang, Heinecke. “Leveraging the bfloat16 artificial. . . ”:
k = 8 bits is enough

Banner, Nahshan, Soudry. “Post training 4-bit quantization. . . ”:
k = 4 bits is enough

Hubara, Courbiaux et al. “Binarized neural networks”:
k = 1 bit is enough

Question: Why? How? How can k = 4 be enough?
Answer: We do not know. It just works.
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Our objective

Precision

Performance

Error

max error

minimally  
safe precision

“sweet spot”

Compute precision

ideal precision

Finding the sweet spot thru identifying the relation precision↔accuracy

R reliably

R automatically

R for large DNNs
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Ingredients to DNNs

Basic computational units of DNNs: neurons

Each neuron computes y = g(w · x + b)

Input x ∈ R, Output y ∈ R
Weight w ∈ R, Bias b ∈ R
Activation function g : R→ R

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Generalization: w · x + b becomes a matrix or tensor operation

Computational Layers:

Essentially tensor operations with dot-products
May change the dimension of the output vector y w.r.t x
Maximum/minimum operations used as well
Extensive theory on FP for linear algebra exists

Activation Layers:

Activation Functions must be non-linear
Activation Functions are differentiable
Several common choices
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Activation Layers

Activation Layers take input x ∈ Rm and produce output y ∈ Rm

Sigmoid function

yi = σ(xi ) =
1

1 + e−xi
∈ [0; 1]

Hyperbolic tangent

yi = tanh(xi ) ∈ [−1; 1]

Softmax

yi = Softmax(xi ) =
exi∑m
j=1 e

xj
∈ [0; 1]

Rectified Linear Unit
yi = ReLU(xi ) = max {xi , 0}
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Towards Automatic Error Analysis of DNNs

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

DNN

RGB images

Input Properties

p? > . . .

Confidence bound

Maximum roundoff error is ε = . . .

FP precision k = . . . is enough
to avoid misclassification

. . . (other properties)
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Towards Automatic Error Analysis of DNNs

Spoiler Alert

FP data type is replaced with
our custom type

Error quantities are computed
with interval arithmetic

Output error is a multiple of u,
set the one you like

A whole class is analyzed, not
just a point-image

MobileNet

DNN

pumpkin.jpg

pixels in (0;255)

p? > 0.6

Confidence bound

Maximum relative error is ε = 11.5 u

FP precision k = 8 is enough
to avoid misclassification

. . . (other properties)
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What will need to go into the heavy machinery?

What does the automatic analysis tool need to do?

Find out how much round-off error is generated by each operation
R How does round-off behave as a function of precision k?

Accumulate the round-off errors
R Not every round-off error is equally important eventually

Rigorously enclose the ranges of each variable in the code
R This will allow errors be weighted correctly

How can we relate round-off error to misclassification?

Pretty straightforward, we’ll see later, bear with me

How can we make sure the results of the automatic tool are sane?

Manual analysis of certain DNN layers required
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Error of One FP Operation

FP Operations behave as if computed exactly and then rounded:

x ⊕ y = �(x + y), x 	 y = �(x − y), x ⊗ y = �(x × y), . . .

The unit roundoff for precision k is u = 2−k+1

The relative error bound due to the rounding

ε =

∣∣∣∣�(x)

x
− 1

∣∣∣∣ u−1 ≤ 1/2

Hence ∃ ε ∈ [−1/2, 1/2] s.t.

x � y = (x ◦ y) · (1 + ε u) , for ◦ ∈ {+,−,×, /}

Spoiler: we do not have 1 operation, but n –lots of– operations

n = 2 : x ⊗ (y ⊗ z) = (x × y × z) ·
(
1 + ε1 u + ε2 u + ε1 ε2 u2

)

(Disclaimer: nothing on this slide is new science, see Wilkinson, Higham, Muller, Rump)
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Combined Errors

Solution: use Affine Arithmetic (AA)

Annotate each FP quantity q̂ in a code with a bound ε on its error:

q̂ = q · (1 + ε u) , with |ε| ≤ ε

If q̂ stems from an exact quantity q, then simply set ε = 1/2

If q̂ is the result of an FP operation on quantities r̂ and ŝ
R both r̂ and ŝ are annotated with εr and εs
R propagate their bounds and integrate the operation’s error
bound
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̂q q

Exact  
quan*ty

̂q
ε̄ = 1/2

FP annota*on
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̂q
̂q

ε̄ = f(ε⊙, ̂r

Everyone  
bears some  

error

⊙ ̂s

ε̄r

̂r
ε̄s

̂s

ε̄r,
ε̄s,…)

FP annota*on

C.Lauter and A.Volkova Reliable Machine Learning CERN DS seminar 17 / 33



Error analysis example

For example, for an addition operation, which has an error ε�, we obtain

q̂ = r̂ ⊕ ŝ = (r̂ + ŝ) · (1 + ε� u)

= (r · (1 + εr u) + s · (1 + εs u)) · (1 + ε� u)

= (r + s) ·
(

1 + εr
r

r + s
u + εs

s

r + s
u

)
· (1 + ε� u)

= q · (1 + ε u) ,

with

ε = f (εr , εs , ε�, r , s) =

(
1 + εr

r
r+s u + εs

s
r+s u

)
· (1 + ε�u)− 1

u

To compute it we need:

The bounds εr and εs for r̂ and ŝ
The bound ε� for the operation
Bounds on the amplification terms r

r+s and s
r+s

What if r + s → 0 ?
R Yes, of course, there is no finite bound
R But that’s precisely what FP theory predicts (cancellation)
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Absolute vs. Relative Errors

Rela%ve Error 

̂q = q ⋅ (1 + ε u), with  |ε | ≤ ε

addi$on

Solution: use both bounds and propagate them whenever possible.
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Using Errorprone FP to Analyze the Errors of FP?

Can we use FP arithmetic –which prone to error– to

Compute bounds on amplification terms like r
r+s or

Evaluate formulas as the one we saw for ε for ⊕ ?

R No, we need something “error-free”

Exact, rational arithmetic is not usable either
R too costly and transcendental functions in the activation layers

Solution: use Interval Arithmetic (IA)

Each quantity q is an interval
[
q, q
]

Operations have interval inputs and interval outputs, inclusion property
IA can be implemented efficiently with FP and directed roundings

e.g. [x , x ] +
[
y , y

]
=
[
4
(
x + y

)
,O (x + y)

]
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Decorrelation Effect

IA never lies but take e.g. x ∈ [−1, 1] in the code snippet

y = x;
z = x - y;

R IA yields z ∈ [−2, 2] even if FP z is surely 0

This is the Decorrelation Effect

Absolute or relative AA share the same issue

Solution:

Annotate each quantity with a unique, fresh ID
Copy the ID at assignments
Modify IA and AA to produce 0 for subtractions with same ID
(resp. 1 for divisions with same ID)

R We call our approach

Combined Enhanced Affine Arithmetic (CAA)
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A CAA Class

In a DNN, we replace the native FP type with a CAA class

The CAA class has the following members

The original FP quantity with its native FP type
A unique quantity ID
An IA bound for the quantities range
An absolute error bound δ expressed as an IA interval
A relative error bound ε expressed as an IA interval

The CAA class overloads all original FP operations

Constructors from integer types
Constructors from FP constants
Addition, Subtraction, Multiplication, Division, Square Root
exp, tanh, log. . .
max, min
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Where are we at?

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

DNN

RGB images

Input Properties

p? > . . .

Confidence bound

Maximum roundoff error is ε = . . .

FP precision k = . . . is enough
to avoid misclassification

. . . (other properties)
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Classification Problems and Error

Issue: Relate Error and Misclassification

Example:

Simple classification DNN
Two classes: Cat and Dog
Let p? be the maximum confidence

Confidence

0 1

p⋆
0.6

p†
0.4 0.5

Solving for k uses the headroom for FP error while
guaranteeing correct classification
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Classification Problems and Error

Issue: Relate Error and Misclassification

Example:

Simple classification DNN
Two classes: Cat and Dog
Let p? be the maximum confidence

Confidence

0 1

p⋆
0.6

p†
0.4

(p⋆ − p†)/2

0.5

p⋆ − 1
2 = δ̄u = δ̄2−k+1For absolute error:

For rela8ve error:
2 p⋆ − 1
2 p⋆ + 1 = δ̄u = δ̄2−k+1

Solving for k uses the headroom for FP error while
guaranteeing correct classification
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Analyzing a Softmax Layer

Classification DNNs often end with a Softmax layer:

yi = Softmax(xi ) =
exi∑m
j=1 e

xj

Let x̂i = xi + δi be the FP representation of xi .

We get

ŷi =
exi+δi∑

k

exk+δk

=
exi∑

k

exk ·

(
1 +

∑
k
exk ·(eδk−δi−1)∑

k
exk

)

= yi ·
(

1 +
1

1 + ηi
− 1

)
= yi · (1 + εi )
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Analyzing a Softmax Layer (cont’d)

In that last term, we have

ηi =
∑
k

exk∑
j
exj
·
(
eδk−δi − 1

)
.

This quantity is easily bounded with

|ηi | ≤
∑
k

exk∑
j
exj
·max

t

∣∣∣eδt−δi − 1
∣∣∣

≤ max
k

∣∣∣eδk−δi − 1
∣∣∣ .

Assume the δk and ηi mildly bounded, we get –with a Taylor development–

|εi | ≤ 11/2 max
k
|δk |
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Softmax Layer: Lessons Learned

ŷi = Softmax(xi + δi ) = Softmax(xi ) · (1 + εi )
with |εi | ≤ 11/2 max

k
|δk |

This is great news!
Relative error is hard to achieve in FP Arithmetic
Absolute error is essentially trivial
In a DNN with a Softmax Layer, we get relative error. . .
. . . for the price of an absolute error bound.

Example:

Suppose we have p? > 60%
Hence 2 p?−1

2 p?+1 = 2−3.45

Equating εi = 2−3.45, we get the requirement |δk | < 2/11 · 2−3.45 ≈ 2−6

This means 6bit fixed-point arithmetic is enough.
FP can only do better.
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Experimental Results

DNNs used for Experiments

Digits: self-trained, handwritten digits recognition, NIST data
MobileNet: standard Keras Mobile Vision DNN
Pendulum: self-trained, DNN used as a controller for a dyn. system

Environment

Intel Core i7-7500U CPU at 2.70GHz, 4 cores
Linux 4.19.0-13-amd64 Debian 4.19.160-2
gcc/g++ 8.3.0
MPFI 1.5.0 on MPFR 4.0.2 on GMP 6.1.2

max absolute error in u max relative error in u analysis time

Digits 1.1u 3.4u 12s per class
MobileNet 22.4u 11.5u 4.2h per class
Pendulum 1.7u – 100ms

R p? = 60%: precision k = 8 is enough for Digits
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Towards Automatic Error Analysis of DNNs

What we have so far

Front-end supports keras models

CAA class replaces all FP computations

Error bounds are guaranteed

Templated arithmetics

Computed error is a multiple of u

A whole class is analyzed, not just a
point-image

... and this also works for Fixed-Point !

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

DNN

RGB images

Input Properties

p? > . . .

Confidence

Maximum roundoff error is ε = . . .

FP precision k = . . . is enough
to avoid misclassification

. . . (other properties)
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Towards Automatic Error Analysis of DNNs

What needs to be improved

Analysis time too high

FxP analysis needs to cope with
different wordlengths

Too much human interaction needed

p? value needs to be known

Once precision is known, code still
needs to be written manually
R Leverage the power of code
generation

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

DNN

RGB images

Input Properties

p? > . . .

Confidence

Maximum roundoff error is ε = . . .

FP precision k = . . . is enough
to avoid misclassification

. . . (other properties)
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Beyond this work

Efficient and accurate deployment
R Low-precision activation functions

Doing such analysis for training is much harder
R Towards probabilistic interval arithmetic ?

Offending Input of a DNN:

e.g. DNN is fed a picture of a cat but says “Dog”
Dangerous for ML used for autonomous tasks like driving

Is there a way to rigorously determine offending inputs?

Polytopic approach

Output classes form polytopes in vector spaces
“Backpropagate” these polytopes to the input
Intersect input polytopes of two output classes

Issues:

Non-linear activation transform polytopes non-linearly
Explosion of dimensions and associated search-space
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Beyond this work

Industry uses Kalman Filters since the 1960ies
R Kalman Filters are a type of Machine Learning

Kalman Filter

Observe measurements with statistical noise over time
Use a model of the observed phenomenon
Remove part of the statistical noise of the measurments
Produce estimates of hidden, unobservable state variables

Implementation of Kalman filters
RWe work on code generation for LTI filters
RWe analyze FxP for DNNs
RTowards automatic FxP code generation for Kalman Filters
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Q/A

Thank you for your attention !
Questions?

arXiv preprint:
https://arxiv.org/abs/2002.03869

Tool available soon, follow
https://avolkova.org

Contact us:
anastasia.volkova@univ-nantes.fr

clauter@alaska.edu
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Fixed-Point Arithmetic in Embedded Systems

Embedded Systems often work with Fixed-Point Arithmetic (FxP)

FxP represents quantities as 2E ·m as well
Only the integer significand m is stored
The exponent E stays implicit
The exponent E relates to the MSB position of the quantities

FxP Operations lead to round-off error, too

Implicit exponents need to be unified before operations
Multiplications modify the implicit exponents in output
Integer shifts required for ajustment
R Right-shifts (>>) drop LSBs and provoke error

FxP Arithmetic works correctly only if we can prevent overflow

R Static analysis of MSB positions, error and ranges required
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Analyzing FxP

FxP Error Analysis goes in several phases:
1 Determine the “precision” of each variable
R Called wordlength w in FxP

2 Determine the position of the MSB bit of each variable
R This piece of information comes for free as IA gives ranges

3 Deduce the appropriate left- and right-shifts in the code
R Easy to implement in a class’ methods

4 Deduce the corresponding operation errors
5 Propagate and accumulate the errors
R Essentially the same as for absolute error on FP

FxP is right-aligned while FP is left-aligned

Error Analysis parameterized by a unit u is hard
Future work needs to address this drawback
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Experimental Results for FxP

DNNs used for Experiments

Digits: self-trained, handwritten digits recognition, NIST data
MobileNet: standard Keras Mobile Vision DNN
Pendulum: self-trained, DNN used as a controller for a dyn. system

Using several FxP Arithmetic wordlengths w in the experiments

max error for w = 24 max error for w = 32 analysis time

Digits 6.0 · 10−2 7.3 · 10−4 20s per class
MobileNet – – (too long)
Pendulum 4.5 · 10−6 1.8 · 10−8 2s

R Automatic FxP MSB determination & overflow prevention
with rigorous error bounds
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