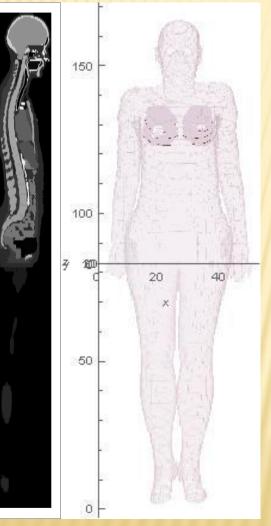
<u>Kiryl Viarenich</u>, Victor Minenko, Siamion Kutsen (Institute for Nuclear Problems, Belarusian State Univerity, Minsk)

CALCULATION OF SPECIFIC ABSORBED FRACTIONS IN BODY USING MONTE-CARLO SIMULATIONS

## INTRODUCTION

- × Specific absorbed fraction (SAF) is a fraction of radiation R of energy  $E_{R,i}$  emitted within the source region  $r_{\rm S}$  that is absorbed per mass in the target region  $r_{\rm T}$ .
- SAF are used to estimate doses from internal exposure caused by radionuclides distributed in human body.
- Monte-Carlo simulations are used for calculation of radiation doses in organs of human.

## OBJECTIVE


To calculate specific absorbed fractions in the breast tissue of adult female from <sup>131</sup>I distributed in breast and <sup>137</sup>Cs+<sup>137m</sup>Ba, <sup>134</sup>Cs as whole body sources.

# **REFERENCE INDIVIDUAL**

- \* Reference individual is an idealised human with characteristics defined by the International Commission on Radiological Protection (ICRP) for radiation protection purposes [IAEA safety glossary].
- Average height and weight, masses of organs and tissues, etc. of a reference Caucasian man are given in ICRP Publication 89 : Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values (2002).



## **REFERENCE ADULT FEMALE PHANTOM**



- ICRP recommends using voxel phantoms of reference adult male and female described in ICRP Publication 110 (2007).
- Reference adult female phantom is a voxel phantom, which was created based on tomograms of a real person.
- Reference adult female phantom phantom consists of 3 886 020 voxels.
- Each parallelepiped has dimensions 1.775×1.775×4.84 mm<sup>3</sup>.
- Huge computational resources are required for radiation transport calculations.

## DATA FROM ICRP PUBLICATION 110

- 1. Array of numbers that describe each point of the phantom
- 2. Table of 136 organ IDs, names, tissue numbers and densities
- 3. Table of elemental composition of 53 media
- 4. List of 53 media with blood ratio (contents of blood in each medium)

### PROGRAM "FANTOM110"

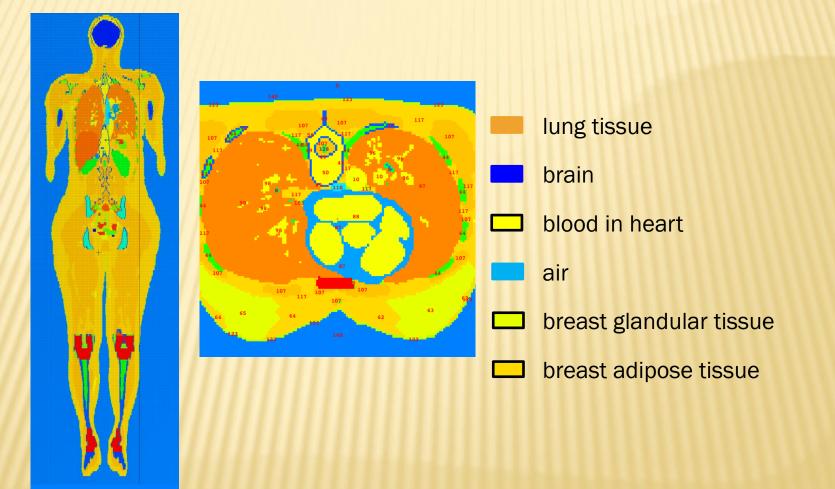
A program "Fantom 110" was developed.

- 1. reading of the array of numbers, which describe the phantom;
- 2. reading of tables of organs and media;
- 3. plotting images of the phantom;
- 4. writing the Monte-Carlo input file.
- Program "Fantom110" was written in Wolfram Mathematica 12.1 computer algebra system.
- **x** The main array of numbers is read using ReadList function.

[Viarenich et al. Proceedings of NPCS 2021]

#### PROGRAM "FANTOM110" OUTPUT

#### Array of numbers


| CA. ~      |              |              |       |             |        |       |             |       |     |      |       |       |        |      | _ @                        | ] X   |     |
|------------|--------------|--------------|-------|-------------|--------|-------|-------------|-------|-----|------|-------|-------|--------|------|----------------------------|-------|-----|
| /cygdrive/ | /1/f         | rom K        | ute~l | P110        | phar   | ntom/ | /AF/A       | \F.da | at  | 2876 | 98152 | 2/561 | 4      |      |                            | 48%   |     |
|            |              | 4 124        |       |             |        |       |             |       |     |      |       |       |        | 124  | 124                        |       |     |
| 12         | 4 12         | 4 124        | 124   | 124         | 124    | 124   | 124         | 124   | 124 | 124  | 124   | 124   | 0      | 0    | 0                          |       |     |
|            | 0            | 0 0          | 0     | 0           | 0      | 0     | 0           | 0     | 0   | 123  | 123   | 117   | 117    | 117  | 117                        |       | =   |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 117                        |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
| 11         |              | 7117<br>00   |       | 123         | 0<br>0 | 0     | 0<br>124    | 0     | 0   | 0    |       | 0     | 0      | 0    | 0                          |       |     |
| 12         |              | 0 0<br>4 124 |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 4 124        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 8 118        |       |             |        |       |             |       |     |      |       | 124   |        |      |                            |       |     |
|            |              | 8 118        |       |             |        |       |             |       |     |      |       |       |        |      | 22                         |       |     |
|            |              | 8 118        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 8 118        |       |             |        |       |             |       |     | 0    |       | 0     | 0      | 0    | 0                          |       |     |
|            |              | 0 0          |       | 0           | 0      |       | 123         |       |     |      |       |       |        |      |                            |       |     |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 117                        |       |     |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 117                        |       |     |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 117                        |       |     |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 117                        |       |     |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 123                        |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 117                        |       |     |
| 11         | 7 11         | 7 117        | 117   | 117         | 117    | 117   | 117         | 117   | 117 | 117  | 117   | 117   | 117    | 117  | 117                        |       |     |
|            |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
| 11         |              | 7 117        |       |             |        |       |             |       |     |      |       |       |        | 0    | 0                          |       |     |
|            |              | 0 0          |       | 0           | 0      | 0     | 0           | 0     | 0   | 0    | 0     | 0     | 0      | 0    | 0                          |       |     |
|            |              | 4 118        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 8 118        |       |             |        |       |             |       |     |      |       |       |        | 22   | 22                         |       |     |
|            |              | 8 118        |       |             |        |       |             |       |     |      |       |       |        |      |                            |       |     |
|            |              | 8 124        |       | 124         |        |       |             |       |     |      |       |       |        |      | 118                        |       |     |
|            | 8 11<br>верн | 8 118<br>ЗВы |       | 118<br>4He) |        |       | 118<br>D~ти |       |     |      |       |       |        |      | 22<br>омат <mark>10</mark> | Ruyon | -   |
|            | верн         |              | ход   | ane)        |        | Build | лоти        | 0     |     | TIO  | TCK   | one)  | CO DIN | 9001 |                            | рыход |     |
|            |              | 111          |       |             | _      |       |             |       |     |      |       |       |        |      |                            | P.    | -11 |

#### Input file

\_ 🗆 🗙

| /cygdrive/j/1/from Kute~k/ICRP110 phantom/AF 1 2847/61M  | 0% 🔺                                                    |
|----------------------------------------------------------|---------------------------------------------------------|
| c fantom for *F8 calculatings 136                        |                                                         |
| c AF TASMIP 0 mm Al inherent                             |                                                         |
| c all volumes are exact                                  | Ξ                                                       |
| <pre>c age=1 Zcentr=36.3; Date:21 July; Kcent=273;</pre> | -                                                       |
| c Energy==80                                             |                                                         |
| c cells                                                  |                                                         |
| 1 43 -1.03 -32 u=1 imp:p=1 vol=5.56589 \$ Adrena         | l, left                                                 |
| 2 43 -1.03 -32 u=2 imp:p=1 vol=7.0603 \$ Adrenal         | , right                                                 |
|                                                          | or nasal passage (                                      |
|                                                          | ior nasal passage                                       |
|                                                          | ucosa, tongue                                           |
|                                                          | ucosa, lips and ch                                      |
| 7 45 -1.03 -32 u=7 imp:p=1 vol=7.76175 \$ Trachea        | a                                                       |
| 8 45 -1.03 -32 u=8 imp:p=1 vol=8.43271 \$ Bronch         |                                                         |
|                                                          | vessels, head                                           |
|                                                          | d vessels, trunk                                        |
|                                                          | d vessels, arms                                         |
|                                                          | d vessels, legs                                         |
|                                                          | i, upper half, cor                                      |
|                                                          | ri, upper half, sp                                      |
|                                                          | ri, upper half, me                                      |
|                                                          | i, lower half, cor                                      |
|                                                          | ri, lower half, sp                                      |
|                                                          | ri, lower half, me                                      |
|                                                          | and radii, cortic                                       |
|                                                          | e and radii, spong                                      |
|                                                          | e and radii, medul                                      |
|                                                          | s and hand bones,                                       |
|                                                          | ts and hand bones,                                      |
|                                                          | cles, cortical                                          |
|                                                          | icles, spongiosa                                        |
|                                                          | um, cortical                                            |
|                                                          | um, spongiosa                                           |
|                                                          | a, upper half, cor                                      |
|                                                          | ra, upper half, sp                                      |
|                                                          | ra, upper half, me                                      |
| 31 2 -1.92 -32 u=31 imp:p=1 vol=121.077 \$ Femore        |                                                         |
|                                                          | ora, lower half, s                                      |
|                                                          | ый <mark>9</mark> Формат <mark>16</mark> Выход \Upsilon |
| III                                                      | i. ∢                                                    |

## PLOTS IN MONTE-CARLO CODE



section in frontal plane (y=+4 cm)

section in horizontal plane

# CALCULATION OF SAF USING MONTE-CARLO METHOD

SAF from mono-energetic radiation is calculated using the following equation:

 $\Phi = \frac{1}{m} \frac{E_{absorbed}}{E_{emitted}},$ 

where *m* is the mass of target region, kg,  $E_{emitted}$  is the energy of source particles.  $E_{absorbed}$  is energy absorbed in target region per source particle,

# SOURCE SHAPE SPECIFICATION

- **×** Volume source is distributed homogeneously over the region.
- **x** In Monte-Carlo code the following is defined:
- 1) Coordinates of position of central voxel
- 2) Three dimensions of central voxel
- 3) The array of indexes which describe the organ.

# **VERIFICATION OF THE METHOD**

Comparison of Specific Absorbed Fractions calculated using phantom generated using "FANTOM110" program with SAFs from ICRP Publication 133.

[ICRP, 2016. The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions. ICRP Publication 133. Ann. ICRP 45(2), 1–74 ]

#### SAF FROM MONO-ENERGETIC RADIATION

SAFs from mono-energetic radiation were compared with values from ICRP Publication №133

| Radiation         | Φ (breast ← breas | Discrepancy (our |                     |  |
|-------------------|-------------------|------------------|---------------------|--|
|                   | Our study         | ICRP №133        | study-ICRP)/ICRP, % |  |
| 200 keV electrons | 1.9162±0.0003     | 1.915            | 0.06                |  |
| 200 keV photons   | 0.13734±0.0005    | 0.1384           | -0.8                |  |

Notes:

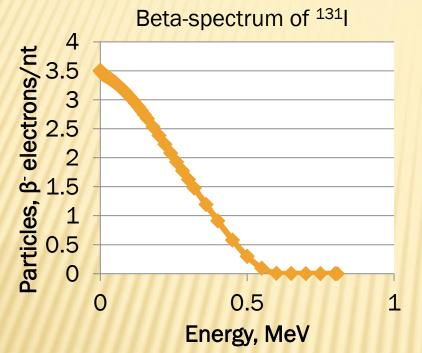
- 1) SAF was adjusted for mass of breast with blood (500 g breast+15.4 g blood=515.4 g).
- 2) Glandular and adipose tissue are treated as a single organ.

## CALCULATION OF SAF FOR A NUCLIDE

SAF from radiation R of a radionuclide is calculated using following equation

$$\Phi_R = \frac{\sum_{i=1}^n \eta_i \Phi_{e,\gamma}(E_i)}{Y_R},$$

where  $\eta_i$  is the yield of particles with energy  $E_i$ , particles/nt,  $\Phi_{e,\gamma}(E_i)$  is SAF from electrons (e) or photons ( $\gamma$ ) of energy  $E_i$ , kg<sup>-1</sup>,  $Y_R$  is yield of radiation of type R, particles/nt, n is number of lines in spectrum of radiation.


SAF from a certain radionuclide is calculated using equation:

$$\Phi = \frac{\sum_R \Phi_R E_R}{\sum_R E_R},$$

where  $\Phi_R$  is specific absorbed fraction calculated separately for radiation of type R ( $\beta$ ,  $\gamma$ , internal conversion electrons etc.), kg<sup>-1</sup>  $E_R$  is the energy of radiation of type R per nuclear transformation, MeV

#### **RADIATIONS FROM RADIONUCLIDES**

131



| Radiation type  | Yield Y <sub>R</sub> , | Energy E <sub>R</sub> , |  |  |
|-----------------|------------------------|-------------------------|--|--|
|                 | particles/nt           | keV/nt                  |  |  |
| γ-rays          | 1.008                  | 381.2                   |  |  |
| X rays          | 0.8175                 | 1.522                   |  |  |
| β <sup>-</sup>  | 1                      | 181.9                   |  |  |
| Internal        | 0.06458                | 9.567                   |  |  |
| conversion      |                        |                         |  |  |
| electrons       |                        |                         |  |  |
| Auger electrons | 0.6975                 | 0.4129                  |  |  |
|                 |                        |                         |  |  |

\*nt – nuclear transformation

Note: <sup>131</sup>I decays into <sup>131m</sup>Xe, which has a half-life of 11 days. Xenon is a chemically inactive element, therefore we suppose that it is removed from the tissue before it decays

[ICRP Publication 107: Nuclear Decay Data for Dosimetric Calculations, 2007]

#### SPECIFIC ABSORBED FRACTIONS FOR 131

Verification:

 comparing of mean energy of each emitted radiation from Monte-Carlo with mean energy from ICRP Publication 107;
comparing specific absorbed doses.

| Nuclide        | Φ (breast ← brea | Discrepancy (our |                     |
|----------------|------------------|------------------|---------------------|
|                | Our study        | ICRP №133        | study-ICRP)/ICRP, % |
| <sup>131</sup> | 0.7036±0.0007    | 0.7113           | -1.1                |

#### Note:

Beta-electrons, Auger-electrons and X-rays and of <sup>131</sup>I have energies below 1 keV, which is a cut-off energy in Monte-Carlo code. Test calculation was made for energies above the cut-off energy which showed, that in this situation everything is accounted for correctly.

#### S-VALUES

- S-value is absorbed dose in target tissues per unit of nuclear transition in source region [Lamart et al. Radiation Protection Dosimetry 2016].
- **×** S-values can be calculated using the following equation:

$$S(r_T \leftarrow r_S) = 1.602 \cdot 10^{-13} \sum_{i=1}^n E_i \Upsilon_i \Phi(r_T \leftarrow r_S, E_i)$$

where S is the S-value, Gy·(Bq·s)<sup>-1</sup>, 1,602·10<sup>-13</sup> is the conversion factor from MeV/kg to Gy n is the number of energies in source spectrum of a nuclide

Notes:

- 1) breast is divided into glandular and adipose tissues (both as source and target regions);
- 2) S-values from [Lamart et al. 2016] were calculated using MCNPX;
- 3) Blood is not included into calculation of S-values [Lamart et al. 2016].

## WHOLE BODY SOURCE

When SAF is calculated from total body, SAF from electrons emitted from bones is assumed to be 0 [Lamart et al. Radiat. Prot. Dosim. 2016]

 $\Phi$ (outside bones  $\leftarrow$  bone, electrons)=0

When the source is the whole body, the density of organ or tissue where a source point is located is assigned to the statistical weight of starting particle history.

× Water content of body mass in adults 73% [ICRP Publication 89]  $\rho$ =1 g/cm<sup>3</sup>. Most soft tissues have  $\rho$ =1.02..1.05 g/cm<sup>3</sup>.

# SAF FROM WHOLE-BODY SOURCE

SAFs from whole body source to breast

<sup>137</sup>Cs+<sup>137m</sup>Ba

 $\Phi$ (breast  $\leftarrow$  body, <sup>137</sup>Cs+<sup>137m</sup>Ba) = 8.55·10<sup>-3</sup> kg<sup>-1</sup>;  $\epsilon$ =0.8%

<sup>134</sup>Cs

 $\Phi$ (breast  $\leftarrow$  body, <sup>134</sup>Cs) = 5.61 $\cdot$ 10<sup>-3</sup> kg<sup>-1</sup>;  $\epsilon$ =1.1%

## SUMMARY

- × Specific absorbed fractions were calculated for
- 1) self-absorption of <sup>131</sup>I in breast;
- <sup>134</sup>Cs and <sup>137</sup>Cs+<sup>137m</sup>Ba whole-body sources to breast;
- Verification of computational method was performed.
- The work is performed with financial support of National Institute of Health and State Scientific Program Research "Energy and nuclear processes and technologies".

#### THANK YOU