Enhanced production cross sections of ^{123,124,126,128}I via incomplete fusion reactions: Scope in Nuclear Medicine

Nucleus-2021 20-25 September 2021

Plan of the talk

Why study long-lived Iodine isotopes? Enhanced production through incomplete fusion reaction Scope in Nuclear Medicine

Cross sections

Complete fusion (CF) channels: Cs isotopes (A = 127, 128, 129, 130) Incomplete fusion (ICF) channels: Iodine isotopes (A = 123, 124, 126, 128)

- Case study of ¹¹B + ¹²²Sn
 Off-line γ-ray spectrometry
- Sum-rule model (original-SRM) Modified SRM
- Summary

Cross sections (CF vs. ICF)

 Nuclei produced through online irradiation of Sn isotopes (foils) using Boron beams (55-78 MeV) using the Heavy-ion accelerator.

Examples:

- **CF:** ¹²⁴Sn(¹¹B, xn)^{135-x}Cs, ¹²⁴Sn(¹⁰B, xn)^{134-x}Cs, ¹²²Sn(¹¹B, xn)^{133-x}Cs
- **ICF:** ¹²⁴Sn(¹¹B, αxn)^{135-x-4}I, ¹²⁴Sn(¹⁰B, αxn)^{134-x-4}I, ¹²²Sn(¹¹B, αxn)^{133-x-4}I
- Cross sections measured by the intensities of characteristic γ -rays emitted by the produced nuclei with long life (min-days).

 \longrightarrow Off-line γ -ray spectrometry

• High-purity coaxial germanium detector utilized for the measurement.

B. Bhujang, Pragya Das *et al.*, Journal of Phys.: Conference Series **420**, 012128 (2013)

Tata Institute of Fundamental Research (TIFR) Mumbai-400005, India

Experimental facility

14 MV Heavy ion accelerator (Pelletron) Heaviest beam delivered so far ¹²⁷I

September 20-25 (Nucleus-2021)

Arabian Sea

CF and ICF

Statistical model code (PACE) utilized for CF cross sections A. Gavron, Phys. Rev. C 21, 230 (1980)

Enhanced cross sections for ICF (much above PACE estimates)

Different mechanism

ICF cross sections higher than Sum rule model estimates!

- Original SRM applied for ICF reactions at beam energies > 10 MeV/A
 J. Wilczyński et al., Phys. Rev. Lett. 45, 606 (1980)
- Modified SRM (MSRM1) for beam energies < 8 MeV/A

R. Tripathi et al., Phys. Rev. C 79 (2009) 064604

• Our study: (MSRM2)

Energy dependence in defining critical angular momentum

Production of iodine isotopes: Scope in Nuclear Medicine

Common Radiotracers in nuclear medicine ¹³¹I ($\tau_{1/2} = 8.04 \text{ d}, E_{\gamma} = 364 \text{ keV}$) produced using reactor ¹²³I ($\tau_{1/2} = 13.2 \text{ h}, E_{\gamma} = 159 \text{ keV}$) cyclotron

- Gamma energies high enough to be penetrating through human body
- Half-lives high enough for practical utilization

Nuclei produced in our experiments (using heavy-ion accelerator) ¹²³I ($\tau_{1/2} = 13.2 \text{ h}, E_{\gamma} = 159 \text{ keV}$) ¹²⁴I ($\tau_{1/2} = 4.2 \text{ d}, E_{\gamma} = 603 \text{ keV}$) ¹²⁶I ($\tau_{1/2} = 12.9 \text{ d}, E_{\gamma} = 389 \text{ keV}$) ¹²⁸I ($\tau_{1/2} = 25 \text{ m}, E_{\gamma} = 443 \text{ keV}$)

Radionuclides used in diagnostics

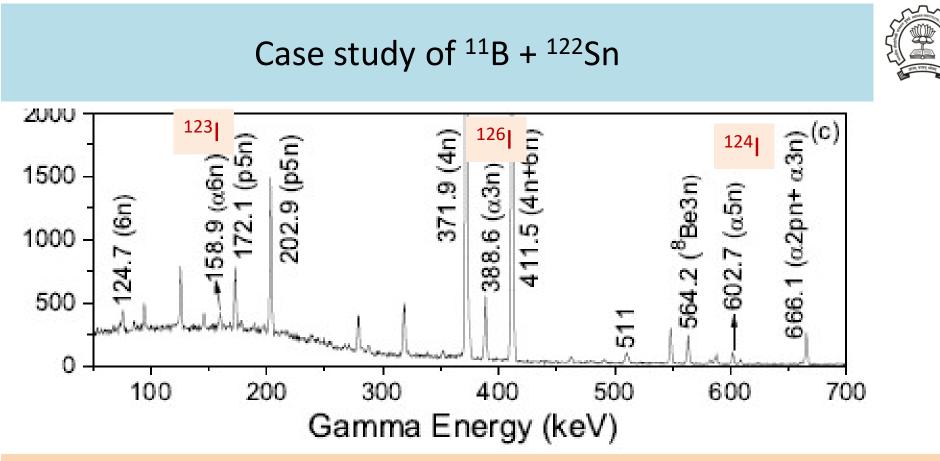
Diagnostic γ radiators

radionuclid	E[keV]	T _{1/2}	
^{99m} Tc	140	6,03 h	
¹¹¹ In	172, 247	2,83 d	
⁶⁷ Ga	93, 185, 300	78,3 h	
123 _I	159	13,2 h	
131 _I	364	8,04 d	
^{81m} Kr	190	13 s	
²⁰¹ Tl	75, 167	73,2 h	

Diagnostic β^+ radiators

radionuclid	E _γ [keV]	T _{1/2}
¹⁸ F	511	110 min
пс	511	20,4 min
¹⁵ O	511	2,07 min
¹³ N	511	10 min

Radionuclides in Therapy


Therapy using β -emitters

Radionuclide	E _{max} [keV]	T _{1/2}	
131I	606	8,04 d	Palliative radionuclide's
¹⁵³ Sm	635, 705, 808	46,7 h	therapy of metastases
¹⁸⁶ Re	940, 1077	3,7 d	
⁸⁹ Sr	1495	50,5 d	Chronic
⁹⁰ Y	2280	64 h	articular diseases

Residual nuclei formed in our studied reactions

Evaporation	Decay	$T_{1/2}$	$^{11}\mathrm{B}{+}^{124}\mathrm{Sn}$	$^{10}\mathrm{B}{+}^{124}\mathrm{Sn}$	$^{11}\mathrm{B}{+}^{122}\mathrm{Sn}$	E_{γ}	$a_{\gamma}(\%)$
residues	mode $(\%)$					(keV)	
^{130}Cs	EC 98.4	29.21	5n		·	536.1	3.8
		m					
^{129}Cs	EC 100	32.06 h	6n	5n	4n	371.9	30.6
^{128}Cs	EC 100	3.66 m	-	6n	5n	442.9	26.8
^{127}Cs	β^+ 100	6.25 h	-	7n	6n	124.7	11.37
127 Xe	EC 100	36.4 d	_	p6n	p5n	202.9	68.7
^{128}I	$\beta^{-} 93.10$	$25 \mathrm{m}$	$\alpha 3n$	$\alpha 2n$	αn	442.9	12.62
^{126}I	β^{-} 47.3	12.93 d	$\alpha 5n$	$\alpha 4n$	$\alpha 3n$	388.6	35.6
	EC 52.7	$12.93 \mathrm{d}$	$\alpha 5n$	$\alpha 4n$	$\alpha 3n$	666.3	32.6
^{124}I	EC 100	4.176 d	-	$\alpha 6n$	$\alpha 5n$	602.7	62.9
¹²³ I	EC 100	13.22 h	-	- 1	$\alpha 6n$	158.9	83.3
^{126}Sb	$\beta^{-} 86.4$	19.15	$\alpha 2p3n$	$\alpha 2p2n$	$\alpha 2pn$	666.1	86
		m					
	β^{-100}	12.35 d	$\alpha 2p3n$	$\alpha 2p2n$	$\alpha 2pn$	666.1	99.6
^{122}Sb	$\beta^-97.59$	$2.734~\mathrm{d}$	-	-	$^{8}\mathrm{Be}3n$	564.2	70.67

- Irradiation of ¹²²Sn foil of thickness ~ 2 mg/cm² for a few hours.
- Immediately after, singles data collection repeatedly for few days.
- Absolute detector efficiency determination using ¹⁵²Eu radioactive source.
- Finding cross-sections at different beam energies from the intensity of γ -rays.

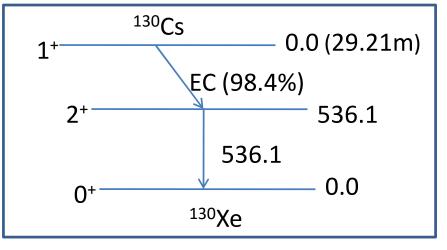
Nuclei studied: τ_{1/2} > 3 min ¹²⁸I (25 m), ¹²⁶I (12.9 d), ¹²⁸Cs (3.6 m), ¹²³I (13.2 hr), ¹²⁴I (4.2 d), ¹²⁷Cs (6.3 h), ¹²²Sb (2.7 d), ¹²⁹Cs (32.1 h), ¹³⁰Cs (29.2 m), ¹²⁶Sb (19.2 m)

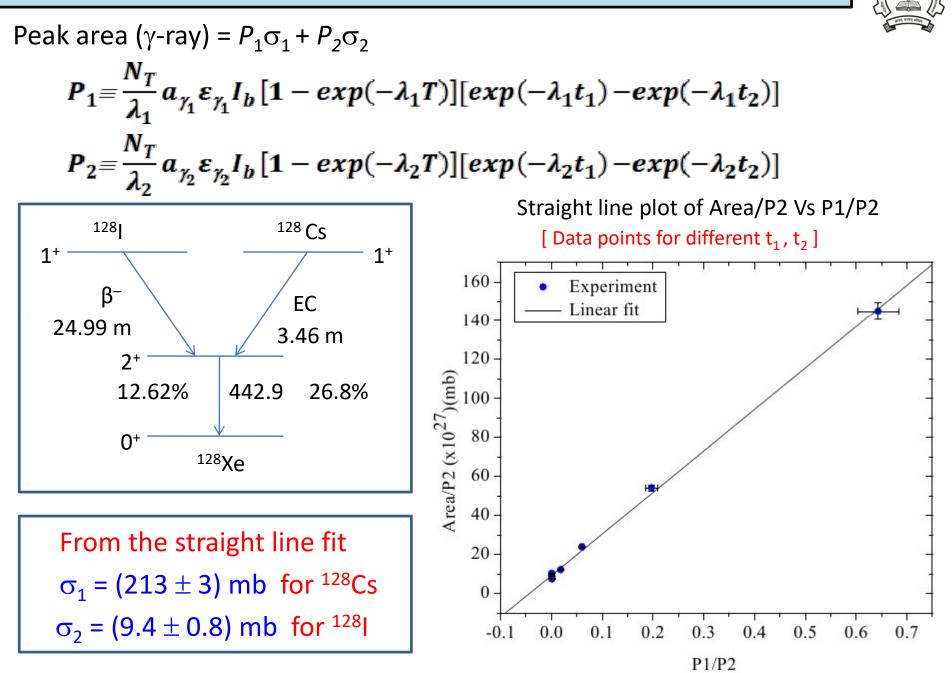
Single decay:

$$\sigma = \frac{\lambda I}{N_T a_{\gamma} \varepsilon_{\gamma} I_b [1 - exp(1 - \lambda T)] [exp(-\lambda t_1) - exp(-\lambda t_2)]}$$

 λ - decay constant,

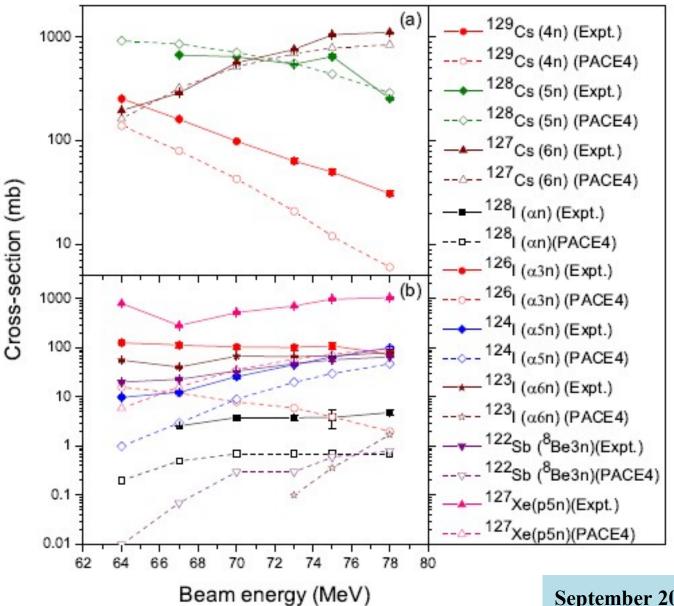
I - *i*ntensity of gamma transition per unit time,


 N_{T} – number of target nuclei per unit volume,


 a_{γ} - branching intensity,

- ϵ_{γ} absolute efficiency,
- I_b beam intensity,

T – irradiation time,


- t_1 start time of data acquisition,
- t_2 start time of data acquisition

¹¹B + ¹²²Sn (Experiment vs. PACE)

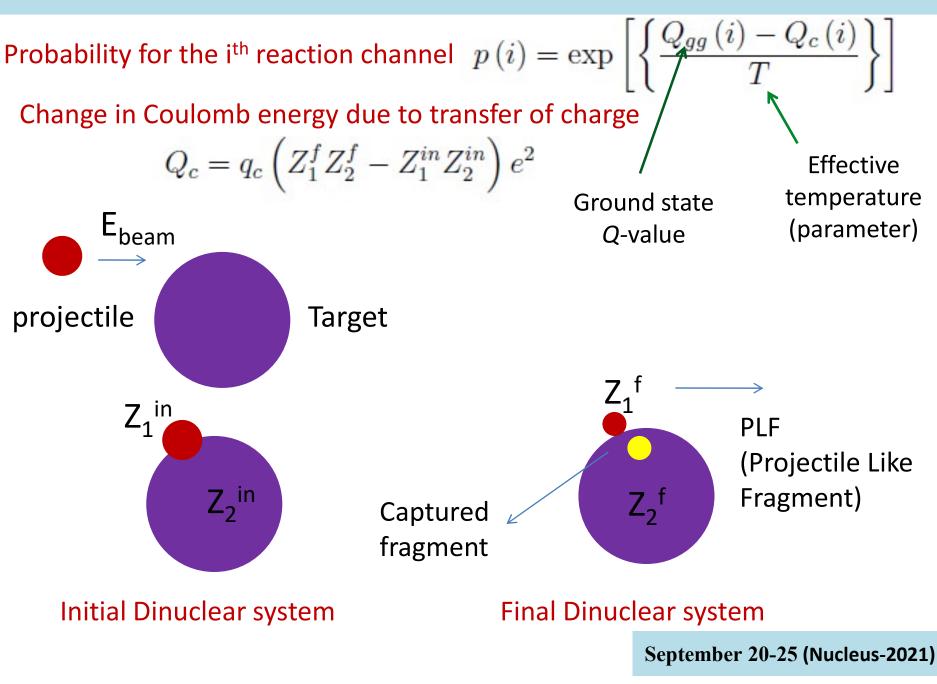
Sum Rule Model K. Siwek-Wilczyńska *et al.* Phys. Rev. Lett. 42, 1599 (1979) J. Wilczyński *et al.*, Phys. Rev. Lett. 45, 606 (1980)

Identical treatment for

Complete fusion (CF) and Incomplete fusion (ICF) reactions

• Concept of generalized angular momentum

 \rightarrow Successive " ℓ -windows" with overlaps


 Higher average value of & for the higher mass of the emitted projectile like fragment (PLF)

Examples of PLF: ⁴He, ⁷Li, ⁸Be

• Complete capture of the projectile (CF)

No emission of PLF

Cont...

Cont...

Limiting angular momentum

 $\ell_{lim}(i) = \frac{mass of projectile}{mass of captured fragment} \times \ell_{cr}(target + captured fragment)$

Critical angular momentum

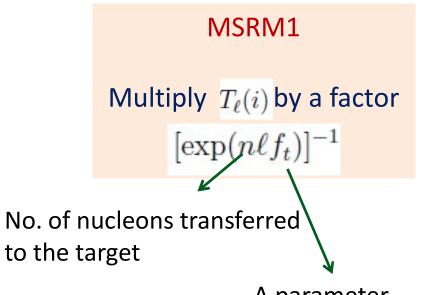
$$\left(\ell_{cr} + \frac{1}{2}\right)^2 = \frac{\mu \left(C_1 + C_2\right)^3}{\hbar^2} \left[4\pi \gamma \frac{C_1 C_2}{C_1 + C_2} - \frac{Z_1 Z_2 e^2}{(C_1 + C_2)^2}\right]$$

 C_1 , $C_2 \rightarrow$ half - density radii $\gamma \rightarrow$ surface tension coefficient

$$C_i = f_c r_o A_i^{\frac{1}{3}}.$$

MSRM2 Add a term inside square bracket $\frac{E}{(C_1 + C_2)}$

Concept of "critical angular momentum" Classical turning point


Transmission coefficient

$$T_{\ell}(i) = \left[1 + \exp\left(\frac{\ell - \ell_{lim}(i)}{\Delta_{\ell}}\right)\right]^{-1}$$

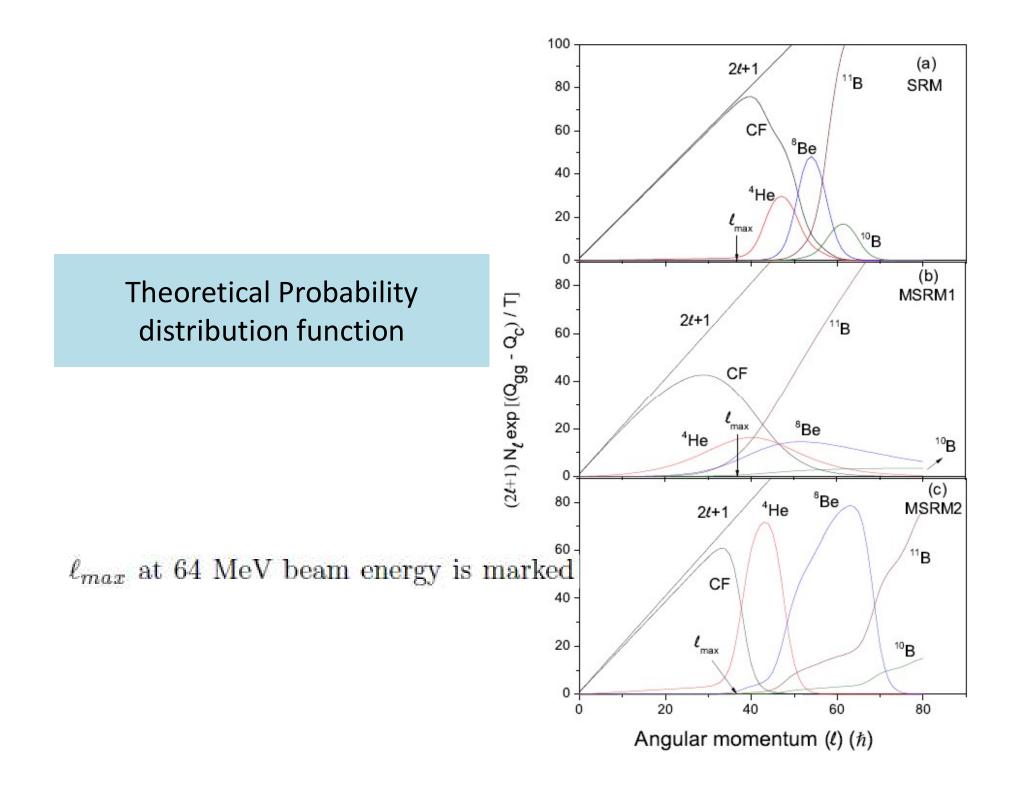
Normalization of probability

$$N_{\ell}\sum_{i}T_{\ell}(i)p(i)=1$$

Summation runs for All the reaction channels including CF

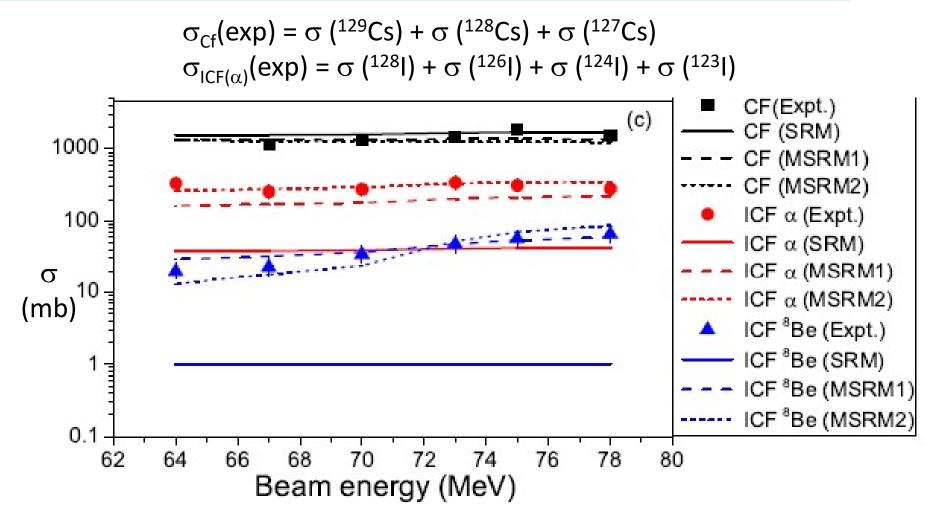
A parameter

Reaction cross-section


$$\sigma(i) = \frac{\lambda^2}{4\pi} \sum_{\ell=0}^{\ell_{max}} (2\ell+1) N_{\ell} T_{\ell}(i) p(i)$$

Summation runs over the range of partial waves that confines CF and ICF

Choice of parameters



Parameter	SRM	MSRM1	MSRM2		
γ	$0.92 \ \mathrm{MeV fm^{-2}}$	$0.92 \ \mathrm{MeV fm^{-2}}$	$0.92 \ \mathrm{MeV fm^{-2}}$		
T	3 MeV	$3 { m MeV}$	$3.5 \mathrm{MeV}$		
q_c	$0.06 \ {\rm fm}^{-1}$	$0.06 \ {\rm fm}^{-1}$	$0.05 \ {\rm fm^{-1}}$		
Δ_{ℓ}	$2\hbar$	$2\hbar$	$1.4 \hbar$		
f_t	-	0.021	-		
f_c	-	-	0.71		
r_0	1.05 fm	1.05 fm	1.08 fm		

Cross sections (¹¹B + ¹²²Sn)

Much better match for ICF using MSRM1 and MSRM2 compared to original SRM

Summary

- Production of Long-lived iodine isotopes (^{123, 124, 126, 128}I) through ICF: Enhanced cross sections measured for beam energies < 8 MeV/A Above coulomb barrier
- Original sum rule model (SRM) worked earlier for beam energies >10 MeV/A SRM underestimated cross section for our studied ICF reactions.
- Two independently suggested modifications (MSRM1 and MSRM2) worked well for our studied reactions.
- ICF reactions provide an alternative way of producing long lived lodine isotopes to be used as radiotracers for diagnostic and therapeutic purposes.
- > ICF can also be utilized for studying nuclear structure properties for nuclei close to β -stability (not discussed here).

