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2Introduction

In Q.M., a quantum speed limit is a lower bound on the time required for a
quantum system to evolve between two (given) distinguishable states.

For shortness, we will assume that the measurement units are chosen in such
a way that

h̄ = 1.

Let us consider an isolated Q.M. system with a Hamiltonian H, which is sup­
posed to be a time­independent self­adjoint operator in the Hilbert space H.
So that the unit (i.e. normalized) vectors of H represent possible (pure) states
of the system. Evolution of a state vector ψ(t) ∈ H, t ∈ R, is governed by the
Schrödinger equation (of course, under the assumption that ψ ∈C1(R,H))

i
d
dt

ψ = Hψ, (1)

ψ(t)
∣∣∣∣
t=t0

= ψ0
(
∈ Dom(H)

)
, (2)

where ψ0 represents an initial state of the system.

(Under the condition ψ0 ∈ Dom(H), the inclusion ψ(t) ∈ Dom(H) holds automat­
ically for any t under consideration :­).
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Let t0 = 0. Then the solution to (1), (2) is given by

ψ(t) =U(t)ψ0, where U(t) = e−iHt, t ∈ R; (3)

the operators U(t), t ∈ R, form a strongly continuous unitary group.

Studies of quantum speed limits originate from the very basic question:

How fast can the isolated system with the Hamiltonian H evolve to a state
orthogonal to its initial state ψ0?

The importance of this question is obvious in many respects. Probably, the
very latest motivation comes from quantum information theory and quantum
computing.

On the concept of state in Q.M. A system state S is a class of equivalence of vectors on a
unit sphere in the Hilbert space H of the system. It is assumed that the (normalized) vectors
ϕ ∈ H and ψ ∈ H belong to (and represent) the same state if there is α ∈ [0,2π) such that
ψ = eiαϕ .

In an obvious way, one may identify the system state S with a the one­dimensional subspace

PS which is a linear span of an arbitrary vector ψ ∈ S , PS :=
{

ϕ = λψ
∣∣λ ∈ C

}
.
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Known answers to the above basic question — lower bounds for the orthogo­
nalization time T⊥:

Mandelstam–Tamm inequality (1945)

T⊥ ≥ π
2∆E

, (4)

Margolis–Levitin inequality (1998)

T⊥ ≥ π
2δE

, (5)

where

∆E =

√
∥Hψ0∥2−⟨Hψ0,ψ0⟩2 and δE = ⟨Hψ0,ψ0⟩−min

(
spec(H)

)
(6)

are the energy spread (dispersion) for the state ψ0 and the average energy for
this state measured relative to the lower bound of H.

Both inequalities recall the uncertainty relation for energy and time but are very different in the

essence since these inequalities are related not to the standard deviation in the measurement

of t but to the well­founded time for a given state to evolve into an orthogonal state.
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Fleming bound (1973)

Tθ ≥ θ
∆E

, (7)

where Tθ is the time moment at which the acute angle

∠
(
ψ0,ψ(t)

)
:= arccos |⟨ψ0,ψ(t)⟩|

between the vectors ψ0 and ψ(t) reaches the value of θ ∈ (0,π/2].

The Mandelstam­Tamm bound is a particular case of the Fleming bound for

θ =
π
2

.

All the three bounds (4), (5), and (7) have been proven to be sharp.
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Notice that, through the years, the Mandelstam­Tamm bound has been redis­
covered several times by various researchers. Also, there are generalizations
of this bound to the evolution of mixed states. Furthermore, there are more
detail evolution speed estimates for particular classes of quantum­mechanical
evolutionary problems. For details, look, e.g., at the review articles 1,2,3. For
the very latest developments look at 4,5.

1S. Deffner and S. Campbell, Quantum speed limits: From Heisenberg’s uncertainty principle
to optimal quantum control, J. Phys. A: Math. Gen 50 (2017), 453001 (49 pages).

2M. R. Frey, Quantum speed limits — primer, perspectives, and potential future directions,
Quant. Information Processing 15 (2016), 3919–3950.

3C. M. Bender and D. C. Brody, Optimal time evolution for Hermitian and non­Hermitian Hamil­
tonians, Lect. Notes Phys. 789 (2009), 341–361.

4N. Il’in and O. Lychkovskiy, Quantum speed limit for thermal states, Phys. Rev. A 103
(2021), 062204.

5S. Albeverio and A.K. Motovilov, Quantum speed limits for time evolution of a system sub­
space, arXiv:2011.02778 (2020) [8 pages].



7Our results: Bounds for the speed of the subspace evolution

We are concerned not with a single state but with a whole (possibly infinite­
dimensional) subspace that is the subject to the Schrödinger evolution. That is,
we consider a subspace P0 ⊂ H such that every vector taken in P0 ∩Dom(H)

evolves according to the Schrödinger equation (1), that is, we consider the
family of Cauchy problems

i
d
dt

ψ = Hψ, (8)

ψ(t)
∣∣∣∣
t=t0

= ψ0, ψ0 ∈P0∩Dom(H). (9)

It is also assumed that (a quite natural but strong assumption!!)

P0∩Dom(H)⊕P⊥
0 ∩Dom(H) = Dom(H). (10)

The assumption (10) implies the 2×2 block matrix representation with respect to the decom­
position H=P0⊕P⊥

0 :

H = Hdiag+Hoff, Hdiag =

(
HP0 0

0 HP⊥
0

)
, Hoff =

(
0 B
B∗ 0

)
with HP0 = PH|P0, Dom(HP0) = P0 ∩Dom(H), HP⊥

0
= PH|P0, Dom(HP⊥

0
) = P⊥

0 ∩Dom(H), and

B = PH|P⊥
0
.
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Sometimes, the Hamiltonian H will be assumed to be a bounded operator.
But, in general it is unbounded.

Recalling: A linear operator H on a space with norm is called bounded if there
is a number c > 0 such that

∥Hx∥ ≤ c∥x∥ for any x ∈ Dom(H).

Otherwise, H is called unbounded.

If H is bounded Hermitian operator (on a Hilbert space) then

∥H∥= max
{
|Emin(H)|, |Emax(H)|

}
,

where
Emin(H) = min

(
spec(H)

)
and Emax(H) = max

(
spec(H)

)
are respectively the upper and lower bounds of the spectrum of H.

Unfortunately for us, few­particle Hamiltonians are usually unbounded.
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Given t ≥ 0, by P(t) we will denote the closure of the span of the values ψ(t)
of the vector functions that solve (8), (9) for various ψ0 ∈P0∩Dom(H). So that
we deal with a path: P(t), t ≥ 0, in the set of all subspaces of the Hilbert space
H. Or (and this is the same) with the path of the orthogonal projections onto
P(t),

P(t), t ≥ 0, Ran
(
P(t)

)
=P(t) (and P(0) = P0). (11)

Surely, the family P(t), t ∈ R, is explicitly given by

P(t) =U(t)P0U(t)∗ = e−iHtP0eiHt. (12)

It is well known (and this is easily verified) that the path P(t), t ≥ 0, is a strong
solution to the Cauchy problem

i
d
dt

P = [P,H], (13)

P(t)
∣∣∣∣
t=t0

= P0, (14)

where [P,H] := PH −HP is the commutator of P = P(t) and H.

[The solution P(t) should be strong in the sense that both (13) and (14) are
assumed to hold being applied to any ψ ∈ Dom(H).]
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It is well known that the set of all orthogonal projections in the Hilbert space H

(and hence the set of all subspaces of H) is a metric space with distance given
by the standard operator norm,

ρ(Q1,Q2) := ∥Q1−Q2∥, ρ(Q1,Q2) := ρ(Q1,Q2),

where Q1, Q2 are arbitrary orthogonal projections and Q1, Q2, their ranges.

It is, however, much less known that there is ANOTHER natural metric on the
set of all the orthogonal projections in/ all the subspaces of the Hilbert space
H. The corresponding distance is defined by

ϑ(Q1,Q2) := ϑ(Q1,Q2) := arcsin(∥Q1−Q2∥). (15)

That (15) is a metric has been first proven in 1993 by Lawrence Brown. An
alternative (and, we think, somewhat simpler) proof may be found in our joint
paper with Sergio Albeverio (2013).

The quantity ϑ(Q1,Q2) is called the maximal angle between the subspaces
Q1 and Q2.
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Remark The concept of maximal angle between subspaces is traced back
to Krein, Krasnoselsky, and Milman (1948). Assuming that (Q1,Q2) is an or­
dered pair of subspaces with Q1 ̸= {0}, they applied the notion of the (relative)
maximal angle between Q1 and Q2 to the number φ(Q1,Q2)∈ [0,π/2] such that

sinφ(Q1,Q2) = sup
x∈Q1,∥x∥=1

dist(x,Q2).

If both Q1 ̸= {0} and Q2 ̸= {0} then

ϑ(Q1,Q2) = max
{

φ(Q1,Q2),φ(Q2,Q1)
}
.

Unlike φ(Q1,Q2), the maximal angle ϑ(Q1,Q2) is always symmetric with re­
spect to the interchange of the arguments Q1 and Q2. Furthermore,

φ(Q2,Q1) = φ(Q1,Q2) = ϑ(Q1,Q2) whenever ∥Q1−Q2∥< 1.

To give a QM interpretation of the maximal angle ϑ(Q1,Q2) we follow the
concept of a subspace­state of a quantum system. Namely, given a subspace
Q⊂H, one says that the system is in the Q­state if it is in a pure state described
by a (non­specified) vector x ∈Q, ∥x∥ = 1. Then the quantity cos2 ϕ(Q1,Q2) is
understood as a minimum probability for a quantum system which is in a Q1­
state to be found also in a Q2­state. The cos2 θ(Q1,Q2) is the minimum of the
quantities cos2 ϕ(Q1,Q2) and cos2 ϕ(Q2,Q1).
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Let
0 = t0 < t1 < t2 < · · ·< tn−1 < tn = t, n ≥ 1, (16)

be an arbitrary partition of the interval [0, t], t > 0. If Q(t) it a projection path,
then by the triangle inequality for the operator angle we have

ϑ
(
Q0,Qt

)
≤

n

∑
k=1

ϑ
(
Qtk−1,Qtk

)
=

n

∑
k=1

arcsin∥Q(tk−1)−Q(tk−1)∥, (17)

where Qs = Ran
(
Q(s)

)
, s ≥ 0.

In particular, if the path Q(t), t ≥ 0, is piecewise smooth w.r.t. the operator
norm topology, then (17) implies (see, e.g., Makarov­Seelmann, 2015) that

ϑ
(
Q0,Qt

)
≤

t∫
0

∥Q̇(t)∥dt, (18)

where Q̇(t) = dQ(t)
dt , t ≥ 0.

The following statement is the main tool that we use below in establishing
quantum speed limits for evolution of subspaces. It represents itself the first of
such limits. Its general proof is based directly on (17).
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Theorem 1. Assume that the projection path P(t) is given by P(t) = e−iHtP0eiHt,
t ≥ 0, where P0 is an orthogonal projection in H such that the closure of the
commutator [P0,H] is a bounded operator. Then the following inequality holds

ϑ
(
P0,Pt

)
≤VH,P0 t, (19)

where P0 = Ran(P0), Pt = Ran
(
P(t)

)
, t ≥ 0, and

VH,P0 := ∥P0HP⊥
0 ∥= ∥P⊥

0 HP0∥
(
= ∥[P0,H]∥). (20)

Proof. More precisely, this is a hint for the proof in the case of bounded H. Observe that the
commutator of P(t) and H does not depend on t, thus,∥∥[P(t),H]

∥∥= ∥∥[P0,H]
∥∥, t ≥ 0. (21)

Furthermore, the commutator [P0,H] is block off­diagonal with respect to the orthogonal de­
composition H=P0⊕P⊥

0 , more precisely,

[P0,H] = P0HP⊥
0 −P⊥

0 HP0 =

(
0 B

−B∗ 0

)
. (22)

From (22) it immediately follows that
∥∥[P0,H]

∥∥= ∥P0HP⊥
0 ∥= ∥P⊥

0 HP0∥. Thus, in order to conclude
with (19) it only remains to combine (13) with (21) and (22) and then to apply to P(t) the
inequality (18).

It is worth to notice that by (19), (20) only the off­diagonal entries P0HP⊥
0 and

P⊥
0 HP0 of H contribute into the variation of the subspace P0. If the Hamiltonian
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H is block diagonal with respect to the decomposition H=P0 ⊕P⊥
0 and, thus,

the subspace P0 is reducing for H it does not vary in time at all. This concerns,
in particular the case where P0 is a spectral subspace of H.

Corollary 2. Under the hypothesis of Theorem 1, assume that Tθ is a time
moment for which the maximal angle between the initial subspace P0 and a

subspace in the path Pt, t ≥ 0, reaches the value of θ , 0 < θ ≤ π
2

, that is,

ϑ
(
P0,P(Tθ)) = θ . (23)

Then

Tθ ≥ θ
VH,P0

. (24)

Example 3. Let the Hamiltonian H correspond to a two­level quantum system
with non­degenerate bound states e1 and e2, that is, ∥e1∥= ∥e2∥= 1, ⟨e1,e2⟩= 0,
and

H = E1⟨·,e1⟩e1+E2⟨·,e2⟩e2

where the binding energies E1 and E2 are different, E1 ̸= E2. Assume that
P0, P0 = ⟨·,e⟩e, is projection on the one­dimensional subspace spanned by the
vector e = 1√

2
(e1 + e2). In this case (24) turns into equality, which means that

the lower bound (24) is sharp.
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Notice that Example 3 is employed in many papers on quantum speed limits
(see the surveys mentioned above). In particular, this example proves tightness
of both the Mandelstam­Tamm and Margolus­Levitin inequalities.

Theorem 4. Assume the hypothesis of Theorem 1. Let θ and Tθ be the same
as in Corollary 2. Then the following inequality holds:

Tθ ≥ θ
∆EP0

, (25)

where
∆EP0 := sup

ψ∈P0∩Dom(H),∥ψ∥=1

(
∥Hψ∥2−⟨Hψ,ψ⟩2)1/2

(26)

Skipping the proof, we only notice that (25) is proven by Theorem 1 by taking
into account that VH,P0 ≤ ∆EP0.

Remark 5. The same Example 3 shows that the bound (25) is sharp. (In the
case of a one­dimensional subspace this bound simply turns into the Fleming
bound for the speed of a state evolution).
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The next statement is rather well known. We present it only for convenience.

Lemma 6. Assume that that H is a bounded self­adjoint operator on H and let
P0 be an arbitrary subspace of H. Then the maximal energy dispersion

∆EP0 := sup
ψ∈P0∩Dom(H),∥ψ∥=1

(
∥Hψ∥2−⟨Hψ,ψ⟩2)1/2

satisfies the following (optimal) bound

∆EP0 ≤
Emax(H)−Emin(H)

2
, (27)

where
Emin(H) = min

(
spec(H)

)
and Emax(H) = max

(
spec(H)

)
are respectively the upper and lower bounds of the spectrum of the Hermitian
Hamiltonian H.
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By using Lemma 6 one derives the following corollary.

Corollary 7. Assume that Ω is a non­negative number and let BΩ(H) be the set
of all bounded self­adjoint operators H on the Hilbert space H (with dimH≥ 2)
such that

Emax(H)−Emin(H) = Ω.

Then

inf
H∈BΩ(H)

Tθ(H) =
2θ
Ω

, (28)

where Tθ(H) is a time moment for which the maximal angle between the initial
subspace P0 and a subspace in the path Pt, t ≥ 0, given by (12) reaches the

value of θ ≤ π
2

.

The bound (28) represents a generalization to subspaces of the optimal pas­
sage time estimate established for the quantum brachistochrone problem (see,
e.g. 6. The latter estimate is nothing but the equality in the Fleming bound (7)
with ∆E replaced by 1

2Ω where the quantity Ω is introduced in Corollary 7.
6C. M. Bender and D. C. Brody, Optimal time evolution for Hermitian and non­Hermitian Hamil­

tonians, Lect. Notes Phys. 789 (2009), 341–361.
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