

Theoretical Study of Weakly-Bound Triatomic Systems with Discrete Variable Representation method

Vladimir Timoshenko Evgeny Yarevsky

Saint-Petersburg State University

2021

イロト イヨト イヨト イヨト

2021

1/20

V. Timoshenko, E. Yarevsky (SPbU)

1 Theoretical approaches to solving the problem

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Formulation of the problem

We denote the reduced Jacobi coordinates in \mathbb{R}^3 by two three-dimensional vectors $\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}$ for the particle α . These vectors can be combined into a six-dimensional vector $\boldsymbol{X} = \{\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}\}$. The Hamiltonian H of a system with a separated motion of the center of mass is determined by the expression:

$$H = H_0 + V(\boldsymbol{X}), \quad H_0 = -\Delta_{\boldsymbol{X}} = -\Delta_{\boldsymbol{x}_{\alpha}} - \Delta_{\boldsymbol{y}_{\alpha}}.$$
 (1)

Figure 1: Jacobi coordinates for three particles.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Hamiltonian of the total angular momentum of three particles

The wave-function of a system $\Psi(\mathbf{X})$:

$$\Psi_{M}^{J\tau}(\boldsymbol{X}) = \sum_{M'=0}^{J} (D_{MM'}^{J\tau})^{*}(\phi_{\alpha}, \vartheta_{\alpha}, \varphi_{\alpha}) \Psi_{M'}^{J\tau}(x_{\alpha}, y_{\alpha}, \theta_{\alpha})$$
(2)

Substitution in Shrödinger equation:

$$\sum_{M'=0}^{J} (H_{MM'}^{J\tau} - E\delta_{MM'})\Psi_{M'}^{J\tau}(x_{\alpha}, y_{\alpha}, \theta_{\alpha}) = 0, \quad M = 0, \dots, J.$$
(3)

・ロト ・回ト ・ヨト ・ヨト

The diagonal components of the matrix $H_{MM'}^{J\tau}$ are given by the formulas $H_{MM}^{J\tau} = (1 + (1/2)(\tau(-1)^J - 1)\delta_{M0})\hat{H}_{MM'}^{J\tau}$,

$$\hat{H}_{MM}^{J\tau} = - \frac{1}{x_{\alpha}} \frac{\partial^2}{\partial x_{\alpha}^2} x_{\alpha} - \frac{1}{y_{\alpha}} \frac{\partial^2}{\partial y_{\alpha}^2} y_{\alpha} + \frac{J(J+1) - 2M^2}{y_{\alpha}^2} + V(x_{\alpha}, y_{\alpha}, \theta_{\alpha}) - \left(\frac{1}{x_{\alpha}^2} + \frac{1}{y_{\alpha}^2}\right) \left(\frac{\partial^2}{\partial \theta_{\alpha}^2} + \cot \theta_{\alpha} \frac{\partial}{\partial \theta_{\alpha}} - \frac{M^2}{\sin^2 \theta_{\alpha}}\right)$$
(4)

Off-diagonal components can be represented as $H_{MM'}^{J\tau} = (1 + (1/2)(\tau(-1)^J - 1)(\delta_{M0} + \delta_{M'0}))\hat{H}_{MM'}^{J\tau},$

$$\hat{H}_{MM'}^{J\tau} = \hat{H}_{MM'}^{J\tau} \delta_{MM\pm 1} = \pm \frac{\lambda_{\pm}(J,M)}{y_{\alpha}^2} \sqrt{1 + \delta_{M0} \delta_{M'1} + \delta_{M1} \delta_{M'0}} \times \left(\frac{\partial}{\partial \theta_{\alpha}} + (1 \mp M) \cot \theta_{\alpha}\right),$$
(5)

and
$$\lambda_{\pm}(J, M) = \sqrt{J(J+1) - M(M \pm 1)}$$

(日) (종) (종) (종) (종)

Gaussian quadrature formula

An integral over [-1, 1] can be approximated with the Gaussian quadrature rule based on the polynomials P(z):

$$\int_{-1}^{1} f(z) dz \approx \sum_{i=1}^{n} \frac{w_i}{\rho(z_i)} f(z_i),$$
(6)

where $\rho(z)$ is a weight function, z_1, \ldots, z_n are the zeros of the polynomial P_n , w_i are the weights.

・ロト ・日ト ・ヨト ・ヨト

DVR-functions and potential energy operator

The DVR-functions are defined as:

$$\varphi_i(z) = \frac{P_n(z)}{P'_n(z_i)(z - z_i)}, \qquad \varphi_i(z_k) = \delta_{ik}.$$
(7)

The property of the DVR-functions allows us to simplify the potential energy operator

$$V_{ij} = \sum_{k} \frac{w_k}{\rho(z_k)} V(x, y, z_k) \frac{\varphi_i(z_k)}{\sqrt{w_i}} \frac{\varphi_j(z_k)}{\sqrt{w_j}} = \frac{V(x, y, z_i)}{\rho(z_i)} \delta_{ij}.$$
(8)

DVR-functions and kinetic energy operator

To obtain the matrix of the kinetic energy operator, it is necessary to get the first derivatives $\varphi'_i(z)$ at the points z_1, \ldots, z_n .

$$\varphi_i'(z_k) = \frac{P_n'(z_k)}{P_n'(z_i)(z_k - z_i)} \text{ (for } k \neq i\text{)}, \qquad \varphi_i'(z_i) = -\frac{P_n''(z_i)}{2P_n'(z_i)}. \tag{9}$$

The angular parts of kinetic-energy operator in terms of $z = \cos \theta$.

$$\frac{d^2}{d\theta^2} + \cot\theta \frac{d}{d\theta} - \frac{M^2}{\sin^2\theta} = (1 - z^2)\frac{d^2}{dz^2} - 2z\frac{d}{dz} - \frac{M^2}{1 - z^2},$$
 (10)

$$\frac{d}{d\theta} + (1 \pm M) \cot \theta = -\sqrt{1 - z^2} \frac{d}{dz} + (1 \pm M) \frac{z}{\sqrt{1 - z^2}}.$$
 (11)

DVR-functions and kinetic energy operator

Matrix elements of the diagonal and off-diagonal parts:

$$T_{ij}^{diag} = \sum_{k} \frac{w_k}{\rho(z_k)} \frac{\varphi_i'(z_k)}{\sqrt{w_i}} \frac{\varphi_j'(z_k)}{\sqrt{w_j}} (1 - z_k^2) - \frac{1}{\rho(z_i)} \frac{M^2}{1 - z_i^2} \delta_{ij}.$$
 (12)
$$T_{ij}^{off} = \frac{\sqrt{w_i}}{\rho(z_k)} \frac{\varphi_j'(z_i)}{\sqrt{w_j}} (1 - z_i^2) - \frac{1}{\rho(z_i)} (1 \pm M) \frac{z_i}{1 - z_i^2} \delta_{ij}.$$
 (13)

(日) (四) (三) (三)

Legendre polynomials

For the Legendre polynomials weight function $\rho(z) = 1$. Weights in Gauss quadrature rule

$$w_i = \frac{2(1-z_i^2)}{(n+1)^2 [P_{n+1}(z_i)]^2}.$$
(14)

イロト イヨト イヨト イヨト

The first derivative of the dvr-function

$$\psi_{i}'(z_{k}) = \frac{\varphi_{i}'(z_{k})}{\sqrt{w_{i}}} = \operatorname{sign}(P_{n}'(z_{i}))P_{n}'(z_{k})\frac{\sqrt{1-z_{i}^{2}}}{\sqrt{2}} \quad \text{for } k \neq i,$$
(15)
$$\psi_{i}'(z_{i}) = \frac{\varphi_{i}'(z_{i})}{\sqrt{w_{i}}} = \frac{z_{i}|P_{n}'(z_{i})|}{\sqrt{2(1-z_{i}^{2})}}.$$
(16)

He₃

The most accurate energy value we obtained

 $E = 0.08246 \text{ cm}^{-1} = 0.11792 \text{ K}$

Table 1: Binding energies E_1 of He₃, runtime t and calculation error δE_1 for n functions in DVR decomposition.

n	10	20	30	40		
Legendre decomposition						
E_1, cm^{-1}	$-3.13 \cdot 10^{-3}$	$-7.05 \cdot 10^{-2}$	$-7.99 \cdot 10^{-2}$	$-8.18 \cdot 10^{-2}$		
δE_1	$9.26 \cdot 10^{-1}$	$1.42 \cdot 10^{-1}$	$2.80 \cdot 10^{-2}$	$5.34 \cdot 10^{-3}$		
t, c	12.3	84.4	277.9	662.9		
DVR decomposition						
E_1, cm^{-1}	$-1.29 \cdot 10^{-2}$	$-9.72 \cdot 10^{-2}$	$-8.35 \cdot 10^{-2}$	$-8.26 \cdot 10^{-2}$		
δE_1	$5.69 \cdot 10^{-1}$	$1.81 \cdot 10^{-1}$	$1.59 \cdot 10^{-2}$	$4.21 \cdot 10^{-3}$		
t, c	2.4	9.5	21.6	40.0		
Acceleration factor						
	5.1	8.9	12.9	16.6		

He₃

The DVR method was also developed for constructing functions with Jacobi polynomials $P_n^{(\alpha,\beta)}(z)$. The advantage of this method is the choice of parameters α and β that helps to compensate potential singularity with weight function $\rho(z)$.

Table 2: Binding energies He₃ and relative error for different parameters α and β of Jacobi polynomials $P_n^{(\alpha,\beta)}$ in DVR decomposition.

$\alpha = \beta$	-0.75	-0.50	-0.25	0.0	0.25	0.50	0.75
$E, \mathrm{cm}^{-1} \cdot 10^{-2}$	-8.648	-8.372	-7.164	-9.716	-8.850	-8.627	-8.544
δE	0.049	0.015	0.131	0.178	0.073	0.046	0.035

Na-He₂

Table 3: Binding energies E_1 of Na-He₂, runtime t and calculation error δE_1 for n functions in DVR decomposition.

n	5	10	15			
Legendre decomposition						
E_1, cm^{-1}	$-9.298 \cdot 10^{-2}$	$-1.038 \cdot 10^{-1}$	$-1.034 \cdot 10^{-2}$			
δE_1	$1.007 \cdot 10^{-1}$	$2.743 \cdot 10^{-3}$	—			
t, c	112	802	2641			
DVR decomposition						
E_1, cm^{-1}	$-1.211 \cdot 10^{-1}$	$-1.074 \cdot 10^{-1}$	$-1.027 \cdot 10^{-1}$			
δE_1	$1.718 \cdot 10^{-1}$	$3.849 \cdot 10^{-2}$	$6.535 \cdot 10^{-3}$			
t, c	35	130	285			
Acceleration factor						
	3.2	6.2	9.3			

・ロト・日・・日・・日・ うへの

2021

13 / 20

Comparing of DVR and classical algorithms

Figure 2: Convergence of algorithm for the Legendre and DVR decomposition for the $^7\mathrm{Li-He_2}$ system are shown.

イロト イヨト イヨト イヨト

2021

14 / 20

Comparing of DVR and classical algorithms

Figure 3: Computation time for the Legendre and DVR decomposition for the 7 Li–He₂ system are shown.

・ロト ・回ト ・ヨト ・ヨト

Table 4: Binding energies of the Li–He₂ system (cm^{-1}) for different interparticle potentials: TTY, LM2M2, Cvetko.

	He-He potential	Li-He potential	⁶ Li–He ₂	7 Li–He ₂
Yuan J., Lin C. D	TTY	KTTY	$-2.18 \cdot 10^{-2}$	$-3.18 \cdot 10^{-2}$
This work	TTY	KTTY	$-3.71 \cdot 10^{-2}$	$-5.41 \cdot 10^{-2}$
Baccarelli I. et al.	LM2M2	Cvetko	$-3.61 \cdot 10^{-2}$	$-5.10 \cdot 10^{-2}$
This work	LM2M2	Cvetko	$-2.62 \cdot 10^{-2}$	$-4.07 \cdot 10^{-2}$
Kolganova E.A.	LM2M2	KTTY	$-2.46 \cdot 10^{-2}$	$-3.54 \cdot 10^{-2}$
This work	LM2M2	KTTY	$-3.71 \cdot 10^{-2}$	$-5.41 \cdot 10^{-2}$

Comparing of DVR method for the ass. Legendre and Jacobi polynomials

Figure 4: Convergence of DVR method for the ass. Legendre and Jacobi ($\alpha = \beta = -0.5$) polynomials for the Ne₃.

Conclusion

- The method for calculating quantum mechanical systems of several particles was developed, combining FEM and DVR.
- A study of the possibility of using various types of quadrature formulas for constructing DVR-functions has been carried out.
- The DVR-method is implemented in the program for solving three-particle quantum problems ACESPA.
- The energy levels of weakly bound systems consisting of several atoms were calculated.
- The method was generalized to complex functions for studying resonance states and scattering processes. The resonance states of helium molecule were obtained.

・ロト ・日ト ・ヨト ・ヨト

Acknowledgments

Funding: The reported study was funded by RFBR, project number 19-32-90148.

The calculations were performed on resources of the Computational Center of St. Petersburg State University.

Thank you for your attention!

メロト メロト メヨト メヨト

2021

20 / 20