Theoretical Study of Weakly-Bound Triatomic Systems with Discrete Variable Representation method

Vladimir Timoshenko Evgeny Yarevsky

Saint-Petersburg State University

2021

Contents

(1) Theoretical approaches to solving the problem
(2) Results
(3) Conclusion

Formulation of the problem

We denote the reduced Jacobi coordinates in \mathbb{R}^{3} by two three-dimensional vectors $\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}$ for the particle α. These vectors can be combined into a six-dimensional vector $\boldsymbol{X}=\left\{\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}\right\}$. The Hamiltonian H of a system with a separated motion of the center of mass is determined by the expression:

$$
\begin{equation*}
H=H_{0}+V(\boldsymbol{X}), \quad H_{0}=-\Delta_{\boldsymbol{X}}=-\Delta_{\boldsymbol{x}_{\alpha}}-\Delta_{\boldsymbol{y}_{\alpha}} . \tag{1}
\end{equation*}
$$

Figure 1: Jacobi coordinates for three particles.

Hamiltonian of the total angular momentum of three particles

The wave-function of a system $\Psi(\boldsymbol{X})$:

$$
\begin{equation*}
\Psi_{M}^{J \tau}(\boldsymbol{X})=\sum_{M^{\prime}=0}^{J}\left(D_{M M^{\prime}}^{J \tau}\right)^{*}\left(\phi_{\alpha}, \vartheta_{\alpha}, \varphi_{\alpha}\right) \Psi_{M^{\prime}}^{J \tau}\left(x_{\alpha}, y_{\alpha}, \theta_{\alpha}\right) \tag{2}
\end{equation*}
$$

Substitution in Shrödinger equation:

$$
\begin{equation*}
\sum_{M^{\prime}=0}^{J}\left(H_{M M^{\prime}}^{J \tau}-E \delta_{M M^{\prime}}\right) \Psi_{M^{\prime}}^{J \tau}\left(x_{\alpha}, y_{\alpha}, \theta_{\alpha}\right)=0, \quad M=0, \ldots, J \tag{3}
\end{equation*}
$$

The diagonal components of the matrix $H_{M M^{\prime}}^{J \tau}$ are given by the formulas $H_{M M}^{J \tau}=\left(1+(1 / 2)\left(\tau(-1)^{J}-1\right) \delta_{M 0}\right) \hat{H}_{M M^{\prime}}^{J \tau}$,

$$
\begin{align*}
\hat{H}_{M M}^{J \tau}= & -\frac{1}{x_{\alpha}} \frac{\partial^{2}}{\partial x_{\alpha}^{2}} x_{\alpha}-\frac{1}{y_{\alpha}} \frac{\partial^{2}}{\partial y_{\alpha}^{2}} y_{\alpha}+\frac{J(J+1)-2 M^{2}}{\left.y_{\alpha}^{2}\right)}+V\left(x_{\alpha}, y_{\alpha}, \theta_{\alpha}\right) \\
& -\left(\frac{1}{x_{\alpha}^{2}}+\frac{1}{y_{\alpha}^{2}}\right)\left(\frac{\partial^{2}}{\partial \theta_{\alpha}^{2}}+\cot \theta \frac{\partial}{\partial \theta_{\alpha}}-\frac{M^{2}}{\sin ^{2} \theta_{\alpha}}\right) \tag{4}
\end{align*}
$$

Off-diagonal components can be represented as $H_{M M^{\prime}}^{J \tau}=\left(1+(1 / 2)\left(\tau(-1)^{J}-1\right)\left(\delta_{M 0}+\delta_{M^{\prime} 0}\right)\right) \hat{H}_{M M^{\prime}}^{J \tau}$,

$$
\begin{align*}
\hat{H}_{M M^{\prime}}^{J \tau}=\hat{H}_{M M^{\prime}}^{J \tau} \delta_{M M \pm 1}= & \pm \frac{\lambda_{ \pm}(J, M)}{y_{\alpha}^{2}} \sqrt{1+\delta_{M 0} \delta_{M^{\prime} 1}+\delta_{M 1} \delta_{M^{\prime}}} \times \\
& \left(\frac{\partial}{\partial \theta_{\alpha}}+(1 \mp M) \cot \theta_{\alpha}\right), \tag{5}
\end{align*}
$$

and $\lambda_{ \pm}(J, M)=\sqrt{J(J+1)-M(M \pm 1)}$

Gaussian quadrature formula

An integral over $[-1,1]$ can be approximated with the Gaussian quadrature rule based on the polynomials $P(z)$:

$$
\begin{equation*}
\int_{-1}^{1} f(z) d z \approx \sum_{i=1}^{n} \frac{w_{i}}{\rho\left(z_{i}\right)} f\left(z_{i}\right) \tag{6}
\end{equation*}
$$

where $\rho(z)$ is a weight function, z_{1}, \ldots, z_{n} are the zeros of the polynomial P_{n}, w_{i} are the weights.

DVR-functions and potential energy operator

The DVR-functions are defined as:

$$
\begin{equation*}
\varphi_{i}(z)=\frac{P_{n}(z)}{P_{n}^{\prime}\left(z_{i}\right)\left(z-z_{i}\right)}, \quad \varphi_{i}\left(z_{k}\right)=\delta_{i k} . \tag{7}
\end{equation*}
$$

The property of the DVR-functions allows us to simplify the potential energy operator

$$
\begin{equation*}
V_{i j}=\sum_{k} \frac{w_{k}}{\rho\left(z_{k}\right)} V\left(x, y, z_{k}\right) \frac{\varphi_{i}\left(z_{k}\right)}{\sqrt{w_{i}}} \frac{\varphi_{j}\left(z_{k}\right)}{\sqrt{w_{j}}}=\frac{V\left(x, y, z_{i}\right)}{\rho\left(z_{i}\right)} \delta_{i j} . \tag{8}
\end{equation*}
$$

DVR-functions and kinetic energy operator

To obtain the matrix of the kinetic energy operator, it is necessary to get the first derivatives $\varphi_{i}^{\prime}(z)$ at the points z_{1}, \ldots, z_{n}.

$$
\begin{equation*}
\varphi_{i}^{\prime}\left(z_{k}\right)=\frac{P_{n}^{\prime}\left(z_{k}\right)}{P_{n}^{\prime}\left(z_{i}\right)\left(z_{k}-z_{i}\right)}(\text { for } k \neq i), \quad \varphi_{i}^{\prime}\left(z_{i}\right)=-\frac{P_{n}^{\prime \prime}\left(z_{i}\right)}{2 P_{n}^{\prime}\left(z_{i}\right)} . \tag{9}
\end{equation*}
$$

The angular parts of kinetic-energy operator in terms of $z=\cos \theta$.

$$
\begin{align*}
& \frac{d^{2}}{d \theta^{2}}+\cot \theta \frac{d}{d \theta}-\frac{M^{2}}{\sin ^{2} \theta}=\left(1-z^{2}\right) \frac{d^{2}}{d z^{2}}-2 z \frac{d}{d z}-\frac{M^{2}}{1-z^{2}} \tag{10}\\
& \frac{d}{d \theta}+(1 \pm M) \cot \theta=-\sqrt{1-z^{2}} \frac{d}{d z}+(1 \pm M) \frac{z}{\sqrt{1-z^{2}}} \tag{11}
\end{align*}
$$

DVR-functions and kinetic energy operator

Matrix elements of the diagonal and off-diagonal parts:

$$
\begin{align*}
T_{i j}^{\text {diag }} & =\sum_{k} \frac{w_{k}}{\rho\left(z_{k}\right)} \frac{\varphi_{i}^{\prime}\left(z_{k}\right)}{\sqrt{w_{i}}} \frac{\varphi_{j}^{\prime}\left(z_{k}\right)}{\sqrt{w_{j}}}\left(1-z_{k}^{2}\right)-\frac{1}{\rho\left(z_{i}\right)} \frac{M^{2}}{1-z_{i}^{2}} \delta_{i j} . \tag{12}\\
T_{i j}^{o f f} & =\frac{\sqrt{w_{i}}}{\rho\left(z_{k}\right)} \frac{\varphi_{j}^{\prime}\left(z_{i}\right)}{\sqrt{w_{j}}}\left(1-z_{i}^{2}\right)-\frac{1}{\rho\left(z_{i}\right)}(1 \pm M) \frac{z_{i}}{1-z_{i}^{2}} \delta_{i j} . \tag{13}
\end{align*}
$$

Legendre polynomials

For the Legendre polynomials weight function $\rho(z)=1$. Weights in Gauss quadrature rule

$$
\begin{equation*}
w_{i}=\frac{2\left(1-z_{i}^{2}\right)}{(n+1)^{2}\left[P_{n+1}\left(z_{i}\right)\right]^{2}} \tag{14}
\end{equation*}
$$

The first derivative of the dvr-function

$$
\begin{gather*}
\psi_{i}^{\prime}\left(z_{k}\right)=\frac{\varphi_{i}^{\prime}\left(z_{k}\right)}{\sqrt{w_{i}}}=\operatorname{sign}\left(P_{n}^{\prime}\left(z_{i}\right)\right) P_{n}^{\prime}\left(z_{k}\right) \frac{\sqrt{1-z_{i}^{2}}}{\sqrt{2}} \text { for } k \neq i \tag{15}\\
\psi_{i}^{\prime}\left(z_{i}\right)=\frac{\varphi_{i}^{\prime}\left(z_{i}\right)}{\sqrt{w_{i}}}=\frac{z_{i}\left|P_{n}^{\prime}\left(z_{i}\right)\right|}{\sqrt{2\left(1-z_{i}^{2}\right)}} \tag{16}
\end{gather*}
$$

He_{3}

The most accurate energy value we obtained

$$
E=0.08246 \mathrm{~cm}^{-1}=0.11792 \mathrm{~K}
$$

Table 1: Binding energies E_{1} of He_{3}, runtime t and calculation error δE_{1} for n functions in DVR decomposition.

n	10	20	30	40					
Legendre decomposition									
$E_{1}, \mathrm{~cm}^{-1}$	$-3.13 \cdot 10^{-3}$	$-7.05 \cdot 10^{-2}$	$-7.99 \cdot 10^{-2}$	$-8.18 \cdot 10^{-2}$					
δE_{1}	$9.26 \cdot 10^{-1}$	$1.42 \cdot 10^{-1}$	$2.80 \cdot 10^{-2}$	$5.34 \cdot 10^{-3}$					
t, c	12.3	84.4	277.9	662.9					
DVR decomposition									
$E_{1}, \mathrm{~cm}^{-1}$	$-1.29 \cdot 10^{-2}$	$-9.72 \cdot 10^{-2}$	$-8.35 \cdot 10^{-2}$	$-8.26 \cdot 10^{-2}$					
δE_{1}	$5.69 \cdot 10^{-1}$	$1.81 \cdot 10^{-1}$	$1.59 \cdot 10^{-2}$	$4.21 \cdot 10^{-3}$					
t, c	2.4	9.5	21.6	40.0					
Acceleration factor									
A.						5.1	8.9	12.9	16.6

He_{3}

The DVR method was also developed for constructing functions with Jacobi polynomials $P_{n}^{(\alpha, \beta)}(z)$. The advantage of this method is the choice of parameters α and β that helps to compensate potential singularity with weight function $\rho(z)$.

Table 2: Binding energies He_{3} and relative error for different parameters α and β of Jacobi polynomials $P_{n}^{(\alpha, \beta)}$ in DVR decomposition.

$\alpha=\beta$	-0.75	-0.50	-0.25	0.0	0.25	0.50	0.75
$E, \mathrm{~cm}^{-1} \cdot 10^{-2}$	-8.648	-8.372	-7.164	-9.716	-8.850	-8.627	-8.544
δE	0.049	0.015	0.131	0.178	0.073	0.046	0.035

$\mathrm{Na}-\mathrm{He}_{2}$

Table 3: Binding energies E_{1} of $\mathrm{Na}-\mathrm{He}_{2}$, runtime t and calculation error δE_{1} for n functions in DVR decomposition.

n	5	10	15				
Legendre decomposition							
$E_{1}, \mathrm{~cm}^{-1}$	$-9.298 \cdot 10^{-2}$	$-1.038 \cdot 10^{-1}$	$-1.034 \cdot 10^{-2}$				
δE_{1}	$1.007 \cdot 10^{-1}$	$2.743 \cdot 10^{-3}$	-				
t, c	112	802	2641				
DVR decomposition							
$E_{1}, \mathrm{~cm}^{-1}$	$-1.211 \cdot 10^{-1}$	$-1.074 \cdot 10^{-1}$	$-1.027 \cdot 10^{-1}$				
δE_{1}	$1.718 \cdot 10^{-1}$	$3.849 \cdot 10^{-2}$	$6.535 \cdot 10^{-3}$				
t, c	35	130	285				
Acceleration factor							
					3.2	6.2	9.3

Comparing of DVR and classical algorithms

Figure 2: Convergence of algorithm for the Legendre and DVR decomposition for the ${ }^{7} \mathrm{Li}-\mathrm{He}_{2}$ system are shown.

Comparing of DVR and classical algorithms

Figure 3: Computation time for the Legendre and DVR decomposition for the ${ }^{7} \mathrm{Li}-\mathrm{He}_{2}$ system are shown.

Table 4: Binding energies of the $\mathrm{Li}-\mathrm{He}_{2}$ system $\left(\mathrm{cm}^{-1}\right)$ for different interparticle potentials: TTY, LM2M2, Cvetko.

	He-He potential	Li-He potential	${ }^{6} \mathrm{Li}-\mathrm{He}_{2}$	${ }^{7} \mathrm{Li}-\mathrm{He}_{2}$
Yuan J., Lin C. D	TTY	KTTY	$-2.18 \cdot 10^{-2}$	$-3.18 \cdot 10^{-2}$
This work	TTY	KTTY	$-3.71 \cdot 10^{-2}$	$-5.41 \cdot 10^{-2}$
Baccarelli I. et al.	LM2M2	Cvetko	$-3.61 \cdot 10^{-2}$	$-5.10 \cdot 10^{-2}$
This work	LM2M2	Cvetko	$-2.62 \cdot 10^{-2}$	$-4.07 \cdot 10^{-2}$
Kolganova E.A.	LM2M2	KTTY	$-2.46 \cdot 10^{-2}$	$-3.54 \cdot 10^{-2}$
This work	LM2M2	KTTY	$-3.71 \cdot 10^{-2}$	$-5.41 \cdot 10^{-2}$

Comparing of DVR method for the ass. Legendre and

 Jacobi polynomials

Figure 4: Convergence of DVR method for the ass. Legendre and Jacobi ($\alpha=\beta=-0.5$) polynomials for the Ne_{3}.

Conclusion

(1) The method for calculating quantum mechanical systems of several particles was developed, combining FEM and DVR.
(2) A study of the possibility of using various types of quadrature formulas for constructing DVR-functions has been carried out.
(3) The DVR-method is implemented in the program for solving three-particle quantum problems ACESPA.
(1) The energy levels of weakly bound systems consisting of several atoms were calculated.
(0 The method was generalized to complex functions for studying resonance states and scattering processes. The resonance states of helium molecule were obtained.

Acknowledgments

Funding: The reported study was funded by RFBR, project number 19-32-90148.
The calculations were performed on resources of the Computational Center of St. Petersburg State University.

Thank you for your attention!

