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Theoretical approaches to solving the problem

Formulation of the problem

We denote the reduced Jacobi coordinates in R? by two three-dimensional
vectors x,, ¥y, for the particle a. These vectors can be combined into a
six-dimensional vector X = {z,, y,}. The Hamiltonian H of a system with a
separated motion of the center of mass is determined by the expression:

H=Hy+V(X), Ho=-Ax=-Ag — 24, (1)

Figure 1: Jacobi coordinates for three particles.
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Theoretical approaches to solving the problem

Hamiltonian of the total angular momentum of three
particles

The wave-function of a system ¥(X):

J
T (X) = Z (Difae) (P Vs P )i (T Yars Oor) (2)
M'=0

Substitution in Shrédinger equation:

J
ST Hiv — B ) (o Yo, a) =0, M =0,...,J. (3)
M’'=0
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Theoretical approaches to solving the problem

The diagonal components of the matrix Hj/,, are given by the formulas
Hify = (14 (1/2)(7(=1)7 = 1)dn10) Hifap

1 92 1 J(J+1)—2M?
= - — — N s 04700£
HMM o 8952:8 " 8y2 —Ya + W) +V(za,y )
1 0? d M?
— (= el 4
<x§ + ) (802 + cot ba “80, sin? 9a> )

Off-diagonal components can be represented as_
Hifyy = (L+(1/2)(1(=1)7 = 1)(8aro + nr0)) Hif g

S - A (S, M
H]‘\][M/ :Hj{/;-M'(SMMil = i#\/l'F(SMO(SM’l"‘(sMI(SM’O X

<% +(1F M) cot6‘a> : (5)

and A (J, M) = \/J(J +1) — M(M £1)
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Theoretical approaches to solving the problem

Gaussian quadrature formula

An integral over [—1, 1] can be approximated with the Gaussian quadrature
rule based on the polynomials P(z):

RCLE v} (6

where p(z) is a weight function, 21, ..., 2, are the zeros of the polynomial P,,
w; are the weights.
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Theoretical approaches to solving the problem

DVR-functions and potential energy operator

The DVR-functions are defined as:

pi(2) = #(;)_Zi), ©i(zk) = ik (7)

The property of the DVR-functions allows us to simplify the potential energy
operator

S pilzr) 5(zk) _ V(.. 2) o
‘/1] ; p(zk)v(x7yazk) \/E \/'U)_j p(Zz) 5zj- (8)
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Theoretical approaches to solving the problem

DVR-functions and kinetic energy operator

To obtain the matrix of the kinetic energy operator, it is necessary to get the

first derivatives ¢j(z) at the points z1, ..., zy.
P (2k) , Py (zi)
o) = n for k Hz) = — D2
A S B T AT e

The angular parts of kinetic-energy operator in terms of z = cos#.

d? d M? d? d M?

- T (1l 9, T
P Ry Rl e R il g
d d z

— 1+ M)coth =—v1—22— 1+ M)——.
d0+( ) co Zdz+( ) —
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Theoretical approaches to solving the problem

DVR-functions and kinetic energy operator

Matrix elements of the diagonal and off-diagonal parts:

iag Wy (P;(Zk> (P; Zk) 1 M?
5 =2 ey v v ot 1)
T/ = /;{:U:) W\J-/(j_;) (1-22)— e (1+ M)lj—ifél] (13)
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Theoretical approaches to solving the problem

Legendre polynomials

For the Legendre polynomials weight function p(z) = 1. Weights in Gauss
quadrature rule

— 2
SRR Sk (14)
(n+1)2[Ppi1(2)]
The first derivative of the dvr-function
"z Z@’(zk):sinP’zi P! (z)Y—="+ for k # i, 15
Vi(2k) N en(P,(2:)) Py (k) 7 £ (15)
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He3

The most accurate energy value we obtained

E =0.08246 cm™! = 0.11792 K

Table 1: Binding energies E; of Hes, runtime ¢ and calculation error d F4 for n
functions in DVR decomposition.

n 10 \ 20 \ 30 40
Legendre decomposition
Ei,em™ ! [ =313-1073 | —=7.05-1072 | =7.99-1072 | —8.18 1072
0F 9.26-10~1 1.42 1071 2.80-10~2 5.34-1073
t, c 12.3 84.4 277.9 662.9
DVR decomposition
Ey,em 1| —-1.29-1072 ] —9.72-1072 | —8.35-10"2 | —8.26- 1072
0F 5.69 - 101 1.81-1071 1.59 - 1072 4.21-1073
t, c 2.4 9.5 21.6 40.0
Acceleration factor
5.1 8.9 12.9 16.6
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Heg

The DVR method was also developed for constructing functions with Jacobi
polynomials P{*"” )(z) The advantage of this method is the choice of

parameters « and 3 that helps to compensate potential singularity with
weight function p(z).

Table 2: Binding energies Hes and relative error for different parameters o and S of
Jacobi polynomials P{*® in DVR decomposition.

a=[ —-0.75 | —0.50 | —0.25 0.0 0.25 0.50 0.75
E,em™T.107%2 | —8.648 | —8.372 | —7.164 | —9.716 | —8.850 | —8.627 | —8.544
oE 0.049 0.015 0.131 0.178 0.073 0.046 0.035

V. Timoshenko, E. Yarevsky (SPbU) 2021 12 /20



Na-Hes

Table 3: Binding energies F; of Na-Hes, runtime ¢ and calculation error  F; for n

functions in DVR decomposition.

n 5 10 15
Legendre decomposition
Er,om T | —9.298-10°2 | —1.038-10~F | —1.034- 102
O0F, 1.007 - 1071 2.743-1073 -
t, c 112 802 2641
DVR decomposition
E,em 1| —1211-1071 | —1.074-107' | —1.027 - 107!
0E; 1.718 107! 3.849-1072 6.535- 107
t, c 35 130 285
Acceleration factor
3.2 6.2 9.3
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Comparing of DVR and classical algorithms
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Figure 2: Convergence of algorithm for the Legendre and DVR decomposition for the
"Li-Hes system are shown.
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Comparing of DVR and classical algorithms
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Figure 3: Computation time for the Legendre and DVR decomposition for the
"Li-Hes system are shown.
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Table 4: Binding energies of the Li-He, system (cm™') for different interparticle
potentials: TTY, LM2M2, Cvetko.

He-He potential | Li-He potential | SLi-He, "Li-He,
Yuan J., Lin C. D TTY KTTY -2.181072 | -3.18-1072
This work TTY KTTY -3.71-107% | -5.41-1072
Baccarelli I. et al. LM2M2 Cvetko -3.61-1072 | -5.10-10~2
This work LM2M2 Cvetko -2.62:102 | -4.07-1072
Kolganova E.A. LM2M2 KTTY -2.46:1072 | -3.54-10~2
This work LM2M2 KTTY -3.71-1072 | -5.41-1072
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Comparing of DVR method for the ass. Legendre and
Jacobi polynomials
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Figure 4: Convergence of DVR method for the ass. Legendre and Jacobi

(e = B = —0.5) polynomials for the Nes.
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Conclusion

Conclusion

@ The method for calculating quantum mechanical systems of several
particles was developed, combining FEM and DVR.

@ A study of the possibility of using various types of quadrature formulas
for constructing DVR-functions has been carried out.

@ The DVR-method is implemented in the program for solving
three-particle quantum problems ACESPA.

@ The energy levels of weakly bound systems consisting of several atoms
were calculated.

@ The method was generalized to complex functions for studying resonance
states and scattering processes. The resonance states of helium molecule
were obtained.
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Conclusion
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Thank you for your attention!
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