Dibaryon resonances and three-body forces in large-angle *pd* scattering at intermediate energies

Maria Platonova,
Olga Rubtsova, Vladimir Pomerantsev
Skobeltsyn Institute of Nuclear Physics,
Lomonosov Moscow State University

LXXI International conference
"NUCLEUS – 2021. Nuclear physics and elementary particle physics. Nuclear physics technologies"
September 20 – 25, 2021

Proton-deuteron scattering at intermediate energies

- Small-angle pd scattering: described perfectly by Faddeev calculations with modern high-precision NN potentials (at energies $T_p < 350$ MeV) or Glauber diffraction model (at energies from ~ 200 MeV to several GeV).
- Large-angle pd scattering: a long-standing puzzle. No satisfactory explanation by Faddeev calculations with modern 2N and 3N forces or phenomenological models at $T_p > 200$ MeV.

Puzzling large-angle pd scattering

Exp. data vs. 3-body Faddeev calculations

- Similar discrepancies for diff. cross section and polarization observables at $T_p > 200$ MeV.
- Large-angle discrepancy increases with energy.
- Adding 2π -exchange 3N force with intermediate Δ isobar improves description of data only partially.

180

250 MeV/nucleon

 $\overset{60}{\theta_{\mathrm{c.m.}}} \, \begin{bmatrix} \mathrm{deg} \end{bmatrix}^{120}$

-1.0

Puzzling large-angle pd scattering

Energy dependence of pd backward cross section and deuteron tensor analyz. power:

Improvement of data description by the Δ excitation mechanism is significant but strongly model dependent and not satisfactory at $T_p > 400$ MeV.

Inclusion of double scattering without Δ is also important at large angles, but sizeable discrepancies still remain [N.B. Ladygina, EPJA 52 (2016) 199; 56 (2020) 133].

Short-range *NN* **interaction**

- pd large-angle scattering is accompanied by large momentum transfers to the deuteron -> probes the short-range NN interaction.
- At distances r_{NN} < 1 fm two nucleons are overlapped with each other -> their quark structure should be taken into account.
- At short *NN* distances, a 6q bag (dibaryon resonance) dressed with meson fields might be produced; such mechanisms are absent in OBE models but predicted in QCD.
- A simple and effective way to account for the quark d.o.f. in NN interaction: include the 6q intermediate state (dressed dibaryon) via s-channel exchange mechanism (in addition to the t-channel meson exchange at large NN distances).

Modern experimental status of dibaryon resonances

- First theoretical prediction of 6 low-lying dibaryon states D_{IJ} on the basis of SU(6) symmetry F.J. Dyson and N.-H. Xuong, PRL 13 (1964) 815:
 - D_{01} and D_{10} near NN threshold (deuteron and singlet deuteron),
 - D_{12} and D_{21} near $N\Delta$ threshold,
 - D_{03} and D_{30} near $\Delta\Delta$ threshold.
- Five of them (except for D₃₀) have been now confirmed by experiments.
- The strongest evidence of the isoscalar state D_{03} (or $d^*(2380)$): pn \rightarrow d $\pi^0\pi^0$ and other two-pion production reactions, pn elastic scattering: exp. (CELSIUS-WASA and WASA-at-COSY Collab.) + PWA (SAID).
- Isovector state D_{12} : pp and πd elastic scattering, pp \longleftrightarrow d π^+ : exp. + PWA (SAID, Hoshizaki and others), $\gamma d \to d \pi^0 \pi^0$ (Ishikawa et al., ELPH). Also confirmed by recent Faddeev calculations (Gal & Garcilazo).
- Two more isovector dibaryons in 3P_2 and 3P_0 pp channels: pp \rightarrow pp(1S_0) π^0 (Komarov et al., ANKE-COSY Collab.).
- Three more isoscalar dibaryon states near $NN^*(1520)$, $NN^*(1680)$ and ηd thresholds: $\gamma d \rightarrow d \pi^0 \pi^0$ and $\gamma d \rightarrow \pi^0 \eta d$ (Ishikawa et al., ELPH).
- And some other states [see reviews H. Clement et al., Prog.Part.Nucl.Phys. 93 (2017) 195, Chin.Phys.C 45 (2021) 022001].

Isovector dibaryons near $N\Delta$ threshold

- Experiments on $\vec{p} + \vec{p}$ elastic scattering (I. Auer et al., 1978) and PWA for $pp \to pp$, $\pi^+d \to \pi^+d$ and $\pi^+d \to pp$ (N. Hoshizaki, 1979, 1993; R. Arndt et al., 1981, 1993; etc.) revealed a series of isovector resonances in NN channels 1D_2 , 3F_3 , 1G_4 , 3P_2 , etc.
- The lowest (1D_2) isovector resonance with $I(J^P)=1(2^+)$ is the D_{12} dibaryon predicted by Dyson and Xuong: $M(D_{12})\approx 2140-2180~{
 m MeV}\approx M(N+\Delta)=2170~{
 m MeV},$ $\Gamma(D_{12})\approx 100-140~{
 m MeV}\approx \Gamma(\Delta)=117~{
 m MeV}.$

Contributions of the dominant $^1D_2P,\,^3F_3D$ and 3P_2D amplitudes to the $\pi^+d\to pp$ total cross section

Argand plot of the dominant partial-wave amplitudes in $\pi^+ d o pp$

[R. Arndt et al., PRC 48 (1993) 1926]

Dibaryon model for NN interaction

• *s*-channel dibaryon exchange + *t*-channel pion exchange:

- Inelastic processes and NN* intermediate states are treated effectively via the energy-dependent dibaryon width
- 4-5 parameters for the dibaryon potential in each partial wave

Initial version - V. Kukulin et al., JPG 27 (2001) 1851, IJMPE 11 (2002) 1; updated version - V. Kukulin et al., PLB 801 (2020) 135146, EPJA 56 (2020) 229, PRD 102 (2020) 114040, PAN 82 (2019) 934.

Dibaryon model for NN interaction

- Very good description of NN scattering phase shifts and inelasticities up to $T_N=0.6\text{-}1.2$ GeV in all S, P, D, F partial waves (vs. elastic phase shifts up to 350 MeV only for conventional OBE NN potential models).
- Dibaryon masses and widths are consistent with exp. data.

$^{2S+1}L_J$	$T(J^P)$	$M_{ m th}$	$\Gamma_{ m th}$	$M_{\rm exp}$	$\Gamma_{\rm exp}$	Ref.
				2.14 - 2.18		
${}^{3}P_{0}$	$1(0^{-})$	2.2	0.99	2.201	0.091	[12]
$^{3}P_{2}$ - $^{3}F_{2}$	$1(2^{-})$	2.221	0.17	2.197	0.130	[12]
$^{3}F_{3}$	$1(3^{-})$	2.23	0.185	2.20 – 2.26	0.1 – 0.2	[25]
${}^{3}S_{1}$ - ${}^{3}D_{1}$	$0(1^+)$	2.31	0.16	2.315	0.15	[69]
${}^{1}S_{0}$	$1(0^{+})$	2.33	0.05	2.32	0.15	[69]
$^{3}D_{3}$ - $^{3}G_{3}$	$0(3^+)$	2.376	0.084	2.38	0.08	[54]

Dibaryon model for $pp \to d\pi^+$ reaction

ONE (one-nucleon exchange) + $N\Delta$ ($N+\Delta$ intermediate state) + D^* (dibaryon resonances)

Partial cross sections for 3 dominant amplitudes:

ONE + N Δ + D* (full calc.)

- Conventional (ONE+N Δ) mechanisms with soft short-range cut-off $\Lambda_{\pi N\Delta}$ in the $\pi N\Delta$ vertex (consistent with πN elastic scattering) give 40-50% of the 1D_2P and 3F_3D cross sections and only 2.5% of the 3P_2D cross section.
- Significant contributions of intermediate dibaryons in three dominant resonant amplitudes
- Dibaryon parameters consistent with exp. data and the model for NN elastic scattering

[M.N. Platonova & V.I. Kukulin, PRD 94 (2016) 054039]

Dibaryon model for $pp \to d\pi^+$ reaction

Total and diff. cross sections, pp spin correlation parameter:

pd large-angle scattering with intermediate dibaryon resonances

- Dibaryon model for NN and 3N interaction gives a new 3N force meson exchange between the nucleon and dibaryon
- The following mechanism with 3N force and intermediate dibaryon resonance arises from Faddeev (AGS) equations for pd scattering amplitude:

Cf. conventional 2π -exchange 3N force with Δ -isobar excitation:

(D-dibaryon component of the deuteron,

 D^* – excited dibaryon (resonance)):

• Connection between pd elastic scattering and $NN \rightarrow d\pi$ reaction was first suggested by Cragie & Wilkin in 1969 (without detailed treatment of $NN \rightarrow d\pi$ reaction mechanism)

If dibaryons near $N\Delta$ threshold contribute to $NN \rightarrow d\pi$, they should also contribute to $pd \rightarrow dp$.

pd backward scattering with D_{12} dibaryon

- The initial simple model: one-nucleon-exchange (ONE) the background + D_{12} resonance excitation.
- Rescattering processes give a small contribution to pd backward (180°) scattering (though it rises with decreasing scattering angle).
- $N+\Delta$ intermediate state is treated effectively as a part of D_{12} (like in the present version of dibaryon model for NN interaction).
- Parameters of D_{12} (mass, total and partial widths) were adjusted to fit the $pp \rightarrow d \pi^+$ partial cross section in the 1D_2P partial wave:

$$M(D_{12}) = 2145 \text{ MeV}, \ \Gamma(D_{12}) = 120 \text{ MeV},$$

 $BR(D_{12} \rightarrow NN) = 16\%, \ BR(D_{12} \rightarrow \pi d) = 30\%.$

These values are consistent with D_{12} parameters found from SAID PWA of $pp \rightarrow pp$, $\pi^+ d \rightarrow \pi^+ d$ and $\pi^+ d \rightarrow pp$.

pd backward scattering with D_{12} dibaryon

- Sizeable effect of the D_{12} resonance comparable to that of the Δ at $T_p > 300$ MeV
- Other dibaryon resonances (at least, 3F_3 and 3P_2) should be included
- Accurate treatment of t-channel Δ excitation is needed

Conclusions

- Existence of dibaryon resonances and their important role in NN elastic and inelastic scattering have been now confirmed by experiments.
- A new mechanism for puzzling *pd* large-angle scattering including the intermediate dibaryon formation and the corresponding three-body force is proposed.
- A sizeable effect of the $N\Delta$ S-wave resonance $D_{12}(2150)$ (with parameters derived from the $pp \rightarrow d \pi^+$ reaction) in pd backward scattering at 300 MeV < T_p < 1.2 GeV is found.
- \triangleright Inclusion of other known dibaryon resonances as well as accurate treatment of the *t*-channel \triangle excitation is needed to improve agreement with the data.
- Consistent theoretical treatment of pd scattering on the basis of Faddeev equations and dibaryon model for NN and 3N interactions is planned.

Thank You!