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' 'det || || 0nn nnH EI  The eigenvalue problem:

The main question: How to extract scattering information from discrete
eigenvalues representing continuum.

L2 discretization

Expansion of the w.f. over some basis: 

Discrete set of energies:

 0 , 1, ,jE j NUnperturbed Hamiltonian H0:

Total Hamiltonian  H=H0 +V:   , 1, ,jE j N



Spectral shift function

The spectral shift function corresponds to a pair of operators H0 and H=H0+V:

Relation to S-matrix: ( ) ( )E E  

Spectral shift function for a model 

Hamiltonian with 3 bound states

the trace formula 0Tr ( ) ( ) '( ) ( )F H F H F E E dE
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Spectral density

Continuum level density:

Relation to the SSF and 

phase shift :

Thus, the SSF can be considered as integrated continuum level density:

Spectral density for a Hamiltonian with  discrete spectrum:
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‘Naive’ definition:

(E) includes a bound-state contribution.



Discretized continuum

Separate spectral densities can be defined:

Integrated densities of states (IDS):

The main idea: to construct 
smooth functions instead of the 

step-like ones: J(E)→X(E).
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But they do not contain any 
information about scattering. 

IDS for the problem in a box

J(E)

X(E)

One may consider the differences: 

for H 
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Difference of X(E) and 
X0(E) would give the SSF 
(and the phase shift): 
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Quasi-continuous spectrum

For the initial Hamiltonian H0 with continuous spectrum, one considers a family of 
operators H0(a) (a is a small parameter) with  discrete spectra:

(I.M. Lifshits, 1947)
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Functions  X0 and X can be defined as an inverse functions:

 ( ) ( ) ( )

0( ) ( ) ( )E X E X Ea a a   

( ) 1

0 0( ) ( )  X E Eaa  

- eigenvalues belong to some smooth monotonous function;
- one may consider a limit  a → 0.

It has been shown by I.M. Lifshits, the EVs for the total Hamiltonian H(a)=H0(a)+V

are related to EVs of unperturbed  Hamiltonian:
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the SSF

Can be considered as the Taylor expansion:  ( )

0( )j jE j ja  a  a     

( ) ( ) 1

0 0  ( ) ( ) ( ) ( )X E E E X Ea aa   a     

This leads to the same expression for the SSF via the integrated densities:

( ) 1( ) ( )  X E Eaa  



The spectral shift function: and the phase shift:

Spectral densities
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0( ) ( ) ( )E X E X Ea a a  

One can also define separate spectral densities:

The functions X,X0 and 0do not correspond to initial spectra. They depend 

on the function 0. However, the limits for the functions  and  do exist, so 

one may expect that they will ‘converge’ to exact functions when a→ 0.
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The properties of  functions X and X0

At the points of the total Hamiltonian’s spectrum, the phase shifts are 
defined via the function X0 only!
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By using an expansion of X0 at the point          which is closest to        and
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Scattering problem in a box

Discrete spectrum of the free Hamiltonian:

Integrated density:

The phase shift:

From the boundary condition:

0 a r

The small parameter: 
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Cases when X0 is known explicitly

 0 0( ) ( ) ( )     ( ) ( )j jE X E X E E j X E        

The J-matrix approach – the SS-HORSE 
method (A.M. Shirokov et al., PRC 2016):

The function X(E) can be also calculated in the HORSE method. 

In the R-matrix method:

hard sphere phase shift

Within the both methods, the charged particle scattering can be considered as well. 
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Multiple Gaussian bases

The eigenvalues (found from M 
eigenvalue problems) have the 
similar property - dependence on 

common index x:

Radial functions:

Scale parameters:

Consider a set of M bases with shifted scale parameters:

This imitates continuous dependence:
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Eigenvalue problems for H0 and H:

' 'det || || 0nn nnH EI    0

1

N

j j
E


 

1

N

j j
E



t=3, N=20, M=5



( to be compared with                             )

Case of  non-integer indices

Thus one can construct the ISD as follows:

Integrated density of states reconstructed from
20 Gaussian bases 

The same procedure for the spectrum of H:
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The generalized relation for the phase shift:



Numerical examples

atomic units

N=10

N=20

N=35

There is one bound state, and two resonances for this potential.

0 0,     H T H H V   (Csoto et al., PRA 1990) 

orbital momentum L=0

Direct solution 
of Schroedinger
eq.



E(x) has a ‘plato’ in the resonance region similarly to  the stabilization approach

Continuum level density:
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The second resonance:

ER=1.64 a.u., G= 0.27 a.u.

(pole position: E=1.632 – i 0.123  a.u. [H.A. Yamani, 1993])



The phase shift changes rapidly on the 

interval of energies ~G

The shape does not depend on G

Case of  narrow resonance
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ER=0.31009 a.u., G= 3∙10-6 a.u.

N=25

N=35



p+12C scattering

Unperturbed Hamiltonian includes Coulomb interaction:

Short-range nuclear potential:

N=10

N=15

N=20

R-matrix

There is one forbidden state

L=0

P. Descouvemont, 

D. Baye, 2010



Coupled channel scattering

' 0 ' ' ,   , ' 1, ,vH H V N      Total Hamiltonian:

It has been shown (O.A.R., V.N.P. et  al. PRC 2010) that if the discretized spectrum 

of H0 is degenerated then one can divide the discretized spectrum of the total 

Hamiltonian H into different branches corresponding to the eigen channels of 
scattering.  

H0
HH01 H02

0

jE
1

jE

2

jE

By collecting energies from each 
branch one can reconstruct 

functions X(E).

In such a case functions X0(E)
are the same for each channel.

The eigen phases can be 
found from differences:

 0( ) ( ) ( )E X E X E   

However, the question how to reconstruct X in a general case (without a 
degeneracy of the unperturbed  discretized spectrum) is still open. 



Summary

- The formalism with smooth spectral densities and integrated densities has 
been introduced for discretized continuum. 

- Spectral shift function formalism is quite suitable for studying discretized 
spectrum within different approaches.

- The multiple bases of Gaussians (MBG) allow to work with much more 
dense discretized spectrum. 

Further development 

- Multi-channel problem for non-degenerated discretized spectrum.

- The MBG might be useful for three- and few-body scattering calculations 
within approaches which employ integral equation formalism.

Talk of M.N. Platonova: Dibaryon resonances and three-body forces in 
large-angle pd scattering at intermediate energies
Friday, Section 1, 15:20



Thank you for your attention!


