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' 'det || || 0nn nnH EI  The eigenvalue problem:

The main question: How to extract scattering information from discrete
eigenvalues representing continuum.

L2 discretization

Expansion of the w.f. over some basis: 

Discrete set of energies:

 0 , 1, ,jE j NUnperturbed Hamiltonian H0:

Total Hamiltonian  H=H0 +V:   , 1, ,jE j N



Spectral shift function

The spectral shift function corresponds to a pair of operators H0 and H=H0+V:

Relation to S-matrix: ( ) ( )E E  

Spectral shift function for a model 

Hamiltonian with 3 bound states
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Spectral density

Continuum level density:

Relation to the SSF and 

phase shift :

Thus, the SSF can be considered as integrated continuum level density:

Spectral density for a Hamiltonian with  discrete spectrum:
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‘Naive’ definition:

(E) includes a bound-state contribution.



Discretized continuum

Separate spectral densities can be defined:

Integrated densities of states (IDS):

The main idea: to construct 
smooth functions instead of the 

step-like ones: J(E)→X(E).
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But they do not contain any 
information about scattering. 

IDS for the problem in a box

J(E)

X(E)

One may consider the differences: 
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Difference of X(E) and 
X0(E) would give the SSF 
(and the phase shift): 
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Quasi-continuous spectrum

For the initial Hamiltonian H0 with continuous spectrum, one considers a family of 
operators H0(a) (a is a small parameter) with  discrete spectra:

(I.M. Lifshits, 1947)
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Functions  X0 and X can be defined as an inverse functions:
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- eigenvalues belong to some smooth monotonous function;
- one may consider a limit  a → 0.

It has been shown by I.M. Lifshits, the EVs for the total Hamiltonian H(a)=H0(a)+V

are related to EVs of unperturbed  Hamiltonian:
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the SSF

Can be considered as the Taylor expansion:  ( )
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This leads to the same expression for the SSF via the integrated densities:
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The spectral shift function: and the phase shift:

Spectral densities
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One can also define separate spectral densities:

The functions X,X0 and 0do not correspond to initial spectra. They depend 

on the function 0. However, the limits for the functions  and  do exist, so 

one may expect that they will ‘converge’ to exact functions when a→ 0.
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The properties of  functions X and X0

At the points of the total Hamiltonian’s spectrum, the phase shifts are 
defined via the function X0 only!
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Scattering problem in a box

Discrete spectrum of the free Hamiltonian:

Integrated density:

The phase shift:

From the boundary condition:
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Cases when X0 is known explicitly
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The J-matrix approach – the SS-HORSE 
method (A.M. Shirokov et al., PRC 2016):

The function X(E) can be also calculated in the HORSE method. 

In the R-matrix method:

hard sphere phase shift

Within the both methods, the charged particle scattering can be considered as well. 
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Multiple Gaussian bases

The eigenvalues (found from M 
eigenvalue problems) have the 
similar property - dependence on 

common index x:

Radial functions:

Scale parameters:

Consider a set of M bases with shifted scale parameters:

This imitates continuous dependence:
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Eigenvalue problems for H0 and H:
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( to be compared with                             )

Case of  non-integer indices

Thus one can construct the ISD as follows:

Integrated density of states reconstructed from
20 Gaussian bases 

The same procedure for the spectrum of H:
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The generalized relation for the phase shift:



Numerical examples

atomic units

N=10

N=20

N=35

There is one bound state, and two resonances for this potential.

0 0,     H T H H V   (Csoto et al., PRA 1990) 

orbital momentum L=0

Direct solution 
of Schroedinger
eq.



E(x) has a ‘plato’ in the resonance region similarly to  the stabilization approach

Continuum level density:
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The second resonance:

ER=1.64 a.u., G= 0.27 a.u.

(pole position: E=1.632 – i 0.123  a.u. [H.A. Yamani, 1993])



The phase shift changes rapidly on the 

interval of energies ~G

The shape does not depend on G

Case of  narrow resonance
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p+12C scattering

Unperturbed Hamiltonian includes Coulomb interaction:

Short-range nuclear potential:

N=10

N=15

N=20

R-matrix

There is one forbidden state

L=0

P. Descouvemont, 

D. Baye, 2010



Coupled channel scattering

' 0 ' ' ,   , ' 1, ,vH H V N      Total Hamiltonian:

It has been shown (O.A.R., V.N.P. et  al. PRC 2010) that if the discretized spectrum 

of H0 is degenerated then one can divide the discretized spectrum of the total 

Hamiltonian H into different branches corresponding to the eigen channels of 
scattering.  
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HH01 H02
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By collecting energies from each 
branch one can reconstruct 

functions X(E).

In such a case functions X0(E)
are the same for each channel.

The eigen phases can be 
found from differences:

 0( ) ( ) ( )E X E X E   

However, the question how to reconstruct X in a general case (without a 
degeneracy of the unperturbed  discretized spectrum) is still open. 



Summary

- The formalism with smooth spectral densities and integrated densities has 
been introduced for discretized continuum. 

- Spectral shift function formalism is quite suitable for studying discretized 
spectrum within different approaches.

- The multiple bases of Gaussians (MBG) allow to work with much more 
dense discretized spectrum. 

Further development 

- Multi-channel problem for non-degenerated discretized spectrum.

- The MBG might be useful for three- and few-body scattering calculations 
within approaches which employ integral equation formalism.

Talk of M.N. Platonova: Dibaryon resonances and three-body forces in 
large-angle pd scattering at intermediate energies
Friday, Section 1, 15:20
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