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L2 discretization
H|¥)=E|¥)

Expansion of the w.f. over some basis: |'¥) = nZN_;,Cn | 4.0, <¢n |¢k> =l
The eigenvalue problem: det||H_.—El_.|=0
Discrete set of energies:
Unperturbed Hamiltonian H: {E?}, ]=1...,N

Total Hamiltonian H=H, +V: {Ej}, j=1...,N

The main question: How to extract scattering information from discrete
eigenvalues representing continuum.



Spectral shift function

The spectral shift function corresponds to a pair of operators Hy and H=H,+V:

Tr [ F(H)—F (Ho)] _ J‘: F'(E)&(E)dE the trace formula

Relation to S-matrix:  detS(E) =exp(-27ié(E)) = J(E) =-n£(E)
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Spectral shift function for a model
Hamiltonian with 3 bound states



Spectral density

Spectral density for a Hamiltonian with discr&te spectrum:
p,(E)=Tr[5(E-H,)]=) S(E-E,) ,E,— eigen energies
n=1

Continuum level density:
A(E) :—iTr{lm[E+io—H]‘l—lm[E+io—H0]‘1}
T
‘Naive’ definition:

A(E) = Tr[S(E ~H) - 5(E~ Hy)] = p(E) - oy (E)

Relation jco the SSF and A(E):—dg(E) (A(E)zidﬂE)j
phase shift ¢ : dE r dE

Thus, the SSF can be considered as integrated continuum level density:

£(E) :-j A(E")dE"

A(E) includes a bound-state contribution.



Discretized continuum

Separate spectral densities can be defined:

N N
pou(E)=2.8(E-E}) forHyand p,(E)=) 6(E-E;) forH

= j=1

Integrated densities of states (IDS):

Jo(E)=jpOd(E')dE'=_ZN_1:6’(E—E?), W(E))=1  3(E)=X0(E-E,). I(E)=]

One may consider the differences:
P4 (E)—po (E) — A(E)
~[3(B)-3,(E)] —&(E)

But they do not contain any
information about scattering.

The main idea: to construct
smooth functions instead of the

step-like ones: J(E)—X(E).
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IDS for the problem in a box



E

Difference of X(E) and
X,(E) would give the SSF
(and the phase shift):

E(E)=—(X(E)- X, (E))
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Quasi-continuous spectrum  (I.M. Lifshits, 1947)

For the initial Hamiltonian H, with continuous spectrum, one considers a family of

operators Hy(a) (o is a small parameter) with discrete spectra:

_ @ _ | 94U
J du u=jo

- eigenvalues belong to some smooth monotonous function;

- one may consider a limit o - 0.

It has been shown by I.M. Lifshits, the EVs for the total Hamiltonian H(a)=Hy(a)+V

EX =4 (ja)+0(a), DI =EY +O(a)}

are related to EVs of unperturbed Hamiltonian: the SSF
E@ = £ 4 g JBU) gt & > &(E))
J J du |

u=ja

Can be considered as the Taylor expansion: E{* = A(« ) = 4, (a[j +&; ])

Functions Xyand X can be defined as an inverse functions:
aX{?(E)=,"(E) aX(E)=A7"(E)
This leads to the same expression for the SSF via the integrated densities:

o[ XO(E)+E“(E) | = ANE) =aX,(E)= £“(E)=—(X(E)-X{"(E))



Spectral densities

The spectral shift function: and the phase shift:

EO(E)=—(XOE)-XP(E)) T =7 (X (E)-X;"(B))

One can also define separate spectral densities:

dX™ (E) dX ) (E)
“(E)=—2 , (“(E) = ,
po (E) dE P (E) =
() ()
and the CLD: A(“)(E):dx (E) _dX,"(E)
dE dE

The functions X,XO and p,0,do not correspond to initial spectra. They depend

on the function A,. However, the limits for the functions £and A do exist, so

one may expect that they will ‘converge’ to exact functions when o.— 0.



The properties of functions X and X,

5“(E) =z (X“(E)-X{(E))
XUNE)=j —> 8UE)=rmj—nX“(E), j=n,+1...

At the points of the total Hamiltonian’s spectrum, the phase shifts are
defined via the function X, only!

By using an expansion of XO at the point Ef which is closest to Ej and

dX,(Ey) _ [dEo(x = k)}l 1

dE dx Ek

0

: E,—E,
5(“)(Ej) zﬂ(]—k)—i—ﬂ—D :

k



Scattering problem in a box ‘

Discrete spectrum of the free Hamiltonian:

T 1 72 0 a I
sin(lla) =0= k' =n—, E'=——n% n=1,..
a 2m a?
Integrated density: The small parameter: o~ N
X9E) = 2VomE
0 - g 10 —
The phase shift: 8_‘ P 3}
5(”’](En) =—a\/2mFE,, n=ny+1,.... - 6_‘ P o
S e
N .
From the boundary condition: | £
. Jf
sin (a«,f 2mFE, + 5(“’3'(En)) =0 N
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Cases when X, is known explicitly

S(E)=7(X(E)=X,(E)) = &(E,)=J£—7X,(E,)

N
The J-matrix approach —the SS-HORSE H,, L
method (A.M. Shirokov et al., PRC 2016): N =~ o
] _1 Sn41(E) N 1 1 Sn+1(E)
O(En) = fni(Em). Ni(E) = —t : ' (N) = — 1 1 ===
(Ent) = fni(Ew),  fa(E) an Cni1i(E) Xy (E) - an Crniri(E)

The function X(E) can be also calculated in the HORSE method.

In the R-matrix method: 6(E)=mn(E)— ¢(F)

A 4

ji(ka) 0 4 r
o(F) = tan™’ JP ., k=+vV2mE. hardsphere phase shift

E,; - energies of states for which R-
matrix is diagonal

0V (En) = —7X3" (Ent) = —61(Ew)

Within the both methods, the charged particle scattering can be considered as well.



Multiple Gaussian bases

Radial functions: ~ @;(r) = Aj,r' exp(—,Bjrz), j=1...,N

Scale parameters: Eigenvalue problems for H, and H:

Bi=ax(0), Bi=5 (tan[ﬁ%D det||H. .—El .|=0 _.{E?}'_\'ﬂ {Ej}N

J =1

Consider a set of M bases with shifted scale parameters:

. . M
[ﬂ;“ =0y (i+a, —1),J=l,...,N}m , O<a, <...<q, <1

4
This imitates continuous dependence:  '° R
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Case of non-integer indices

Thus one can construct the ISD as follows:

. j=1...,N
XMW(EM)=j+a, -1
m=1...,.M
( to be compared with X (E?) =]) 20
18 1
16
14 -
Integrated density of states reconstructed from e 12
. = 101
20 Gaussian bases gl
6
4_
The same procedure for the spectrum of H: 21
0 . o T . . . . .
X(N)(Elin):k+am _1 10° 10* 107 107 IOE 100 10" 102 10°

The generalized relation for the phase shift:

SM(EP)=x|k+a,-1-XV(E])], 1<k<N, 1<m<M



Numerical examples

H =T H=H +V (Csoto et al., PRA 1990)
0 ’ 0
V(r) = —8exp(—0.167%) 4+ 4 exp(—0.047r7), atomic units
200 orbital momentum L=0

Direct solution
of Schroedinger

eq.

O(E) (deg)
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There is one bound state, and two resonances for this potential.



E(X) has a ‘plato’ in the resonance region similarly to the stabilization approach
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The second resonance:

Er,=1.64 a.u.,, I'=0.27 a.u.

! d8/dE (a.u.)

Continuum level density:
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(pole position: E=1.632 —10.123 a.u. [H.A. Yamani, 1993])



Case of narrow resonance

1do(E) 1 /2
A(E)=— ( )z— —
7 dE 7 (E-E;) +I“/4

The phase shift changes rapidly on the
interval of energies ~I°

1 do(E) dX(E)
7 dE dE

dE(x)/dx (a.u.)

dE() T2
dx cos® (X — Xg)

The shape does not depend on I

dE(x)/dx (a.u.)

E;=0.31009 a.u., I'=3-10° a.u.
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p+12C scattering

Unperturbed Hamiltonian includes Coulomb interaction:

6e?
H{] = T + L
.
Short-range nuclear potential: V(r) = Voexp(—(r/ro)®),  L=0
20 )
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L 151
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) P. Descouvemont,
1301 D. Baye, 2010
— 0ob——r 3
0 2 4 6 8 02 03 04 05 0.6
E (MeV) E (MeV)

There is one forbidden state Er = 0.415 MeV and I' = 37 keV



Coupled channel scattering

Total Hamiltonian:

H,,. =Hy3

ov-vy

+V,., viv'=1..

4N

It has been shown (O.A.R., V.N.P. et al. PRC 2010) that if the discretized spectrum
of Ho is degenerated then one can divide the discretized spectrum of the total

Hamiltonian H into different branches corresponding to the eigen channels of

scattering.

In such a case functions X,(E)
are the same for each channel.

By collecting energies from each
branch one can reconstruct

functions X (E).

The eigen phases can be
found from differences:

5,(E) = (X, (E) = X, (E))
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However, the question how to reconstruct X in a general case (without a
degeneracy of the unperturbed discretized spectrum) is still open.



Summary

The formalism with smooth spectral densities and integrated densities has
been introduced for discretized continuum.

Spectral shift function formalism is quite suitable for studying discretized
spectrum within different approaches.

The multiple bases of Gaussians (MBG) allow to work with much more
dense discretized spectrum.

Further development

- Multi-channel problem for non-degenerated discretized spectrum.

- The MBG might be useful for three- and few-body scattering calculations
within approaches which employ integral equation formalism.

Talk of M.N. Platonova: Dibaryon resonances and three-body forces in
large-angle pd scattering at intermediate energies
Friday, Section 1, 15:20



Thank you for your attention!




