



### СПЕКТРОСКОПИЯ ТЯЖЕЛОГО ИЗОТОПА ГЕЛИЯ <sup>9</sup>Не В РЕАКЦИЯХ ПОГЛОЩЕНИЯ ОСТАНОВИВШИХСЯ ПИОНОВ

### Б.А. Чернышев

Национальный Исследовательский Ядерный Университет «МИФИ»

## Тяжелый изотоп гелия <sup>9</sup>Не

<sup>9</sup>Не имеет очень большое отношение числа нейтронов к числу протонов: N/Z = 3.5.

Впервые <sup>9</sup>Не наблюдался в реакции перезарядки пионов <sup>9</sup>Ве $(\pi^-,\pi^+)^9$ Не. Основное состояние оказалось нестабильным относительно нейтронного распада <sup>9</sup>He<sub>g.s.</sub>  $\rightarrow$  <sup>8</sup>He + n ( $S_n = -1.13(10)$  МэВ). Seth K.K., et al. // Phys. Rev. Lett. 1987 58 1930.









T. Al Kalanee, et al, Phys. Rev. C, 2013 88 034301. (GANIL)

Be(<sup>12</sup>B, <sup>8</sup>He +n). <sup>12</sup>B,  $E_{lab} = 45 \text{ MeV/u}$ 





D. Votaw, *et al*, Phys. Rev. C, 2020 **102** 014325. (MSU)

### Основное состояние <sup>9</sup>Не

Стандартная оболочечная модель предсказывает, что в основном состоянии <sup>9</sup>Не последний нейтрон находится на  $p_{1/2}$ -оболочке, и поэтому это состояние имеет спинчетность  $J^P = 1/2^-$ .

В то же время в нескольких экспериментах были получены указания на то, что основное состояние <sup>9</sup>Не представляет собой виртуальное *s*-волновое состояния с длиной рассеяния -4 фм  $\leq a_s \leq$  -20 фм, что соответствует максимуму в спектре возбуждения  $\approx 0.2$  МэВ. В этом случае для <sup>9</sup>Не<sub>g.s.</sub> спин-четность  $J^P = 1/2^+$ .

Следует отметить достаточно низкую статистическую обеспеченность результатов по наблюдению s-волнового состояния

Таким образом, вопрос о спин-четности основного состояния <sup>9</sup>Не (и возможно аномальной четности этого уровня) остается открытым, также как и положение этого состояния.

## Возбужденные состояния <sup>9</sup>Не

Столь же неопределенной является ситуация с возбужденными состояниями <sup>9</sup>Не

Таблица 1. Экспериментальные результаты по возбужденным уровням <sup>9</sup>Не.

| Реакция                                                             | Г, МэВ                | E <sub>x</sub> , МэВ       |
|---------------------------------------------------------------------|-----------------------|----------------------------|
| ${}^{9}\text{Be}(\pi^{-},\pi^{+}){}^{9}\text{He}$                   | <mark>0.42(10)</mark> | <b>2.33(10)</b>            |
| LAMPF, 1987                                                         | <mark>0.5(1)</mark>   | <mark>4.93(10)</mark>      |
|                                                                     | <mark>≈0.6</mark>     | <mark>≈ 7</mark>           |
| <sup>9</sup> Be( <sup>13</sup> C, <sup>13</sup> O) <sup>9</sup> He  |                       | 1.15(10)                   |
| <b>MPI, 1988</b>                                                    |                       | 3.80(12)                   |
| <sup>9</sup> Be( <sup>14</sup> C, <sup>14</sup> O) <sup>9</sup> He  | <mark>0.7(2)</mark>   | <b>1.15(10)</b>            |
| MPI, 1995                                                           |                       | <b>3.03(10)</b>            |
|                                                                     |                       | <b>3.98(12)</b>            |
|                                                                     | <mark>0.7(2)</mark>   | <mark>≈ 8</mark>           |
| <sup>14</sup> C(π <sup>-</sup> , p <sup>4</sup> He) <sup>9</sup> He | <mark>≤1</mark>       | <mark>≈ 4</mark>           |
|                                                                     | <mark>≤1</mark>       | <mark>≈ 7</mark>           |
|                                                                     | <mark>≈1.5</mark>     | <mark>≈ 12.5</mark>        |
| <sup>14</sup> C(π <sup>-</sup> , d <sup>3</sup> He) <sup>9</sup> He | <mark>≤1</mark>       | <mark>≈ 4</mark>           |
|                                                                     | <mark>≤1</mark>       | <mark>≈ 7</mark>           |
| Реакция                                                             | Г, МэВ                | <i>Е<sub>r</sub></i> , МэВ |
| <sup>1</sup> H( <sup>11</sup> Li, <sup>8</sup> He + n)X             | 0.1(6)                | 1.33(8)                    |
| <b>GSI, 2010</b>                                                    | 0.7(2)                | 2.42(10)                   |
| <sup>2</sup> H( <sup>8</sup> He, p) <sup>9</sup> He                 | <mark>~2</mark>       | 2.0(2)                     |
| <b>JINR, 2007</b>                                                   | <mark>&gt;0.5</mark>  | <mark>≥4.2</mark>          |
| <sup>2</sup> H( <sup>8</sup> He, p) <sup>9</sup> He                 | ~0.1                  | 1.2(1)                     |
| <b>GANIL</b> , 2013                                                 | 2.9(4)                | 3.4(8)                     |
| ${}^{9}Be({}^{12}B, {}^{8}He + n)X$                                 | >1.3                  | 1.1(7)                     |

#### СПЕКТРОСКОПИЯ ТЯЖЕЛОГО ИЗОТОПА ГЕЛИЯ <sup>9</sup>Не В РЕАКЦИЯХ ПОГЛОЩЕНИЯ ОСТАНОВИВШИХСЯ ПИОНОВ

### <sup>11</sup>B(π<sup>-</sup>, pp)<sup>9</sup>He

<sup>14</sup>C(π<sup>-</sup>, p<sup>4</sup>He)<sup>9</sup>He

<sup>14</sup>C(π<sup>-</sup>, d<sup>3</sup>He)<sup>9</sup>He

Yu.B.Gurov, et al. Bull. Russian Ac. Sci.: Physics, 2020, Vol. 84, p. 879.

#### Предыдущие исследования

Сверхтяжелые изотопы водорода <sup>4-7</sup>Н Тяжелые изотопы гелия <sup>5-8</sup>Не Тяжелые изотопы лития <sup>9-12</sup>Li Поглощение остановившихся пионов ядрами – Инструмент для образования нейтронно-избыточных ядер

# $\pi^-$ + <sup>9</sup>Be, <sup>10,11</sup>B, <sup>12</sup>C $\rightarrow$ exotic nuclei + X



**Cluster absorption** 

- $\pi^- + {}^4\text{He} \rightarrow \text{nt}$ 
  - $\pi^{-} + {}^{4}\text{Li} \rightarrow \text{pt}$

 $\pi^{-}$  + <sup>4</sup>Be(Tetraproton)  $\rightarrow$  p <sup>3</sup>He

### Поглощение остановившихся пионов ядрами – Инструмент для образования нейтронно-избыточных ядер

Трех-частичные каналы



Поглощение остановившихся пионов ядрами – Инструмент для образования нейтронно-избыточных ядер Преимущества и недостатки

Преимущества метода:

Формирование остаточных ядер с большим избытком нейтронов N >> Z

Отсутствие погрешностей, обусловленных энергетическим разрешением и угловой расходимостью пучка  $E_0 = M_A + m_{\pi} - /B_{\pi}/;$  P = 0

Исследование широкой области энергий возбуждения  $0 \le E_r \le 40 \; \mathrm{MeV}$ 

Возможность исследовать большое число ядер в одном экспериментальном сеансе

Недостатки метода:

Отсутствие надежных теоретических моделей описания исследуемых реакций

Определение квантовых чисел исследуемых состояний весьма затруднительно

# Layout of spectrometer (LAMPF)

| Beam                     | Target                                                      | Sizes and Impurities                                                 | Stop rate,<br>1/s   | SCD- telescopes                                                                               | Threshold(MeV)                                                                    |
|--------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Eπ= 30 MeV<br>(Δp/p=±1%) | <sup>9</sup> Be<br><sup>10,11</sup> B<br><sup>12,14</sup> C | Thickness – 25 mg/sm <sup>2</sup> ,<br>(135μm),<br>diameter – 26 mm, | ~ 6·10 <sup>4</sup> | 2 Si(Au) -T=100, 450μm<br>14 Si(Li) -T=3 mm,<br>Wd≈0.1mm S=8 mm <sup>2</sup><br>Ω=55÷15 mster | $E_{p} \approx 3.5,$ $E_{d} \approx 4,$ $E_{t} \approx 4.5,$ $E_{He} \approx 15.$ |



•Gornov M. G. et al. // Nucl. Inst. and Meth. in Phys. Res. A 2000. V. 446. P. 461.

## $^{14}C(\pi^-, d^3He)^9He$



<sup>14</sup>C(π<sup>-</sup>, p<sup>4</sup>He)<sup>9</sup>He



# <sup>11</sup>B(π<sup>-</sup>, pp)<sup>9</sup>He



| <i>Е</i> , МэВ | Г, МэВ        |
|----------------|---------------|
| -              | -             |
| 1,2 ± 0,3      | ≤ 0, 5        |
| 2,2 ± 0,3      | ≤ 0,5         |
| 4,4 ± 0,4      | $1,0 \pm 0,5$ |
| 10,5 ± 0,2     | 1,5 ± 0,5     |

|                                    |                       | Гсинции                                                                 |
|------------------------------------|-----------------------|-------------------------------------------------------------------------|
| <b>2.33(10)</b>                    | <mark>0.42(10)</mark> | ${}^{9}\text{Be}(\pi^{-},\pi^{+}){}^{9}\text{He}$                       |
| <mark>4.93(10)</mark>              | <b>0.5(1)</b>         | LAMPF, 1987                                                             |
| <mark>≈ 7</mark>                   | <mark>≈0.6</mark>     |                                                                         |
| 1.15(10)                           |                       | <sup>9</sup> Be( <sup>13</sup> C, <sup>13</sup> O) <sup>9</sup> He      |
| 3.80(12)                           |                       | <b>MPI, 1988</b>                                                        |
| <b>1.15(10)</b>                    | 0.7(2)                | <sup>9</sup> Be( <sup>14</sup> C, <sup>14</sup> O) <sup>9</sup> He      |
| <b>3.03(10)</b>                    |                       | MPI, 1995                                                               |
| <b>3.98(12)</b>                    |                       |                                                                         |
| <mark>≈ 8</mark>                   | 0.7(2)                |                                                                         |
| $1,2 \pm 0,3$                      | $\le$ 0, 5            | <sup>11</sup> B(π <sup>-</sup> ,pp) <sup>9</sup> He                     |
| $2,2 \pm 0,3$                      | ≤ 0,5                 |                                                                         |
| 4,4 ± 0,4                          | $1,0 \pm 0,5$         |                                                                         |
| $10,5 \pm 0,2$                     | $1,5 \pm 0,5$         |                                                                         |
| <mark>≈ 4</mark>                   | <mark>≤1</mark>       | <sup>14</sup> C(π <sup>-</sup> , p <sup>4</sup> He) <sup>9</sup> He     |
| <mark>≈ 7</mark>                   | <mark>≤1</mark>       |                                                                         |
| <mark>≈ 12.5</mark>                | <mark>≈1.5</mark>     |                                                                         |
| <mark>≈ 4</mark>                   | <mark>≤1</mark>       | <sup>14</sup> C(π <sup>-</sup> , d <sup>3</sup> He) <sup>9</sup> He     |
| <mark>≈ 7</mark>                   | <mark>≤1</mark>       |                                                                         |
| <i>Е</i> <sub><i>r</i></sub> , МэВ | Г, МэВ                | Реакция                                                                 |
| 1.33(8)                            | 0.1(6)                | ${}^{1}\mathrm{H}({}^{11}\mathrm{Li}, {}^{8}\mathrm{He} + n)\mathrm{X}$ |
| 2.42(10)                           | 0.7(2)                | GSI, 2010                                                               |
| 2.0(2)                             | ~2                    | <sup>2</sup> H( <sup>8</sup> He, p) <sup>9</sup> He                     |
| <mark>≥ 4.2</mark>                 | <mark>&gt;0.5</mark>  | <b>JINR, 2007</b>                                                       |
| 1.2(1)                             | ~0.1                  | <sup>2</sup> H( <sup>8</sup> He, p) <sup>9</sup> He                     |
| 3.4(8)                             | 2.9(4)                | <b>GANIL</b> , 2013                                                     |
| 1.1(7)                             | >1.3                  | ${}^{9}Be({}^{12}B, {}^{8}He + n)X$                                     |

# Заключение

•Структура уровней тяжелого изотопа гелия <sup>9</sup>Не наблюдалась в трех реакциях поглощения остановившихся пионов

•Во всех реакциях указаний на существование sволнового виртульного состояния вблизи порога обнаружено не было

•В реакции <sup>11</sup>В( $\pi^-$ ,pp)Х впервые наблюдалось узкое состояние с рекордной энергией возбуждения  $E_r = 10.5(2)$  MeV.

