

CONFIRMATION OF A NEW ISOMERIC STATE IN THE 186Re NUCLEUS

V.V. Karasev; V.V. Koltsov

JSC "Khlopin Radium Institute", Sankt-Petersburg, Russia.

Vladimir Koltsov

Khlopin Radium Institute, Saint-Petersburg, Russia

E-mail: vladimir-koltsov@yandex.ru

¹⁸⁶Re nucleus level diagram

Up arrow – the possibility of exciting the trigger level.

- In reactor isomer of 200000 y half-live is populated in 0.3% of cases of neutron capture by ¹⁸⁵Re nuclei.
- Recently de-excitation of the isomer has been stimulated in laser plasma of 1 keV temperature.
- The supposed mechanism of stimulation is the excitation of the isomer to the trigger level, from where it decays to the ground state of the nucleus.
- Detection of stimulation by the decrease in the intensity of 137 keV γ-quanta after a jump-like population of the ground state.
- Now the trigger level parameters are unknown.

Intensity decay corresponds to $T_{1/2}$ = 112 ± 10 hours

If the effect is due to the stimulated discharge of ^{186m}Re nuclei, then the discharge of ~ 10^{-5} % of the ^{186m}Re nuclei is stimulated.

We have to assume that there is an unknown excited state in the ^{186}Re nucleus with $T_{1/2}$ for several days, which is populated upon stimulated discharge of the ^{186m}Re isomers.

The difference in the known results of measuring the ^{186}Re half-live

¹⁸⁶ Re production	Method	Measurement	
method	measurements	duration, days	$T_{1/2, g}$, hours
185 Re $(n, \gamma)^{186}$ Re	$4\pi \gamma$ -ionization	33	89.239 ± 0.026
	chamber		(Schonfeld et al, 1994)
¹⁸⁵ Re (n, γ) ¹⁸⁶ Re	V.1.V.1. 10 V.1	21	89.25 ± 0.07 [6]
			(Coursey et al., 1991)
$^{185}Re\ (n_{th}\ ,\ \gamma)\ ^{186}Re$	γ – spectra	18	90.600 ± 0.024
			(Abzouzi et al., 1989.)
$^{186}W(p, n)^{186}Re$		36	88.35 ± 0.16
			(Our previous work, 2018)

Accuracy is shown at the one standard deviation level.

- The discrepancy in the $T_{1/2,\,g}$ measurement results is another indication of the possibility of the existence of an unknown isomeric level in the ^{186}Re nucleus.
- The measurement technique did not take into account the possible dependence of the observed $T_{1/2,\,g}$ on the method of obtaining ^{186}Re nuclei, on the duration of measurements, and on the time of the beginning of measurements after the end of target irradiation.

The idea of the experiment

- It is possible that the new isomer can be populated in the (p, n) reaction of formation of the ^{186}Re nucleus from ^{186}W .
- Population of a new isomer in this reaction would lead for γ -quanta from an irradiated source to the dependence of the γ -intensity I_{137} (t) on time t after the formation of ^{186}Re nuclei, which differs from the simple exponent associated with the decay of the ground state of ^{186}Re with a half-life of $T_{1/2,\,g}$ = 89.239 hours

Experimental method

Irradiation	Our work (2018)	Present work		
parameters				
p - current, μΑ	4	4		
Exposition, min	15	100		

Measurement method	Our work (2018)	Present work	
Measurement time after the end of irradiation, days	0,2 - 36	30 - 105	
HPGe detector	Ø25 x 15 mm	150 cm ³ with the well	
Measurement geometry	10 mm above the detector	In the well	
Initial loading of the spectrometer, s ⁻¹	~ 10 ³	~ 10 ³	

γ -spectrum of the sample

Stable isotope	^{180}W	¹⁸² W		¹⁸³ W	¹⁸⁴ W		186W
Nature content, %	0,13	26,3		14,3	30,67		28,6
Reaction products (p, n) , $(p, 2n)$	¹⁸⁰ Re	¹⁸¹ Re	¹⁸² Re	¹⁸³ Re	¹⁸⁴ Re	^{184m} Re	¹⁸⁶ Re
$T_{1/2}$	2,4 min	20 h	64 h	70 d	38 d	165 d	90, 64 h
Decay mode	e⁻ capture					β	

Method for processing the results of γ -spectra measurements

- γ -spectra were measured sequentially in time with an exposure of 12 hours.
- The areas of γ -lines in the spectra were determined by fitting Gaussian peaks by the least squares method; in this case, the center of the line, its half-width, and area were determined.
- Half-lives were determined by fitting the decay curve with one or two exponents. The exponents were inscribed using the least squares method.
- The γ -lines of radionuclides in the spectrum remained in place with an accuracy of 0.2 keV.

Determination of $T_{1/2}$ for ^{183}Re is a measurement correctness test.

The decay curve is plotted by measuring the intensity of γ -quanta 291 keV from ^{183}Re .

Time variation of the intensity of the 137 keV γ -line

Background bias model when the measurement time is $t < T_o$. Constant $\lambda = 0.0064~{\rm d}^{-1}$.

$$I_{bac.}(t) = (107900 \times 0.7) \times e^{\lambda (T_o - t)} + (107900 \times 0.3)$$

The model takes into account:

- The value of the intensity I_{137} at the time T_o .
- Exponential decay of I_{137} at $t > T_o$.
- Requirement for the decay curve to match the half-life of ^{186}Re at the start of measurements.

Intensity of 137 keV γ -quanta emitted by ^{186}Re

Half-life, calculated from different parts of the decay curve, increases over time after the formation of ^{186}Re .

The time dependence of the I_{137} intensity corresponds to the existence of the new isomer in the ^{186}Re nucleus. However, for complete unambiguity of such a conclusion, it is necessary to carry out similar measurements again using an improved technique:

- •The target's 186W isotope enrichment should be much better than 97%.
- •The target must be free of impurities, in particular iron.
- •Measurements should be carried out in geometry without summation of X-ray lines in the spectrum.

Thanks!