CONFIRMATION OF A NEW ISOMERIC STATE IN THE 186Re NUCLEUS V.V. Karasev; V.V. Koltsov JSC "Khlopin Radium Institute", Sankt-Petersburg, Russia. Vladimir Koltsov Khlopin Radium Institute, Saint-Petersburg, Russia *E-mail: vladimir-koltsov@yandex.ru* # ¹⁸⁶Re nucleus level diagram Up arrow – the possibility of exciting the trigger level. - In reactor isomer of 200000 y half-live is populated in 0.3% of cases of neutron capture by ¹⁸⁵Re nuclei. - Recently de-excitation of the isomer has been stimulated in laser plasma of 1 keV temperature. - The supposed mechanism of stimulation is the excitation of the isomer to the trigger level, from where it decays to the ground state of the nucleus. - Detection of stimulation by the decrease in the intensity of 137 keV γ-quanta after a jump-like population of the ground state. - Now the trigger level parameters are unknown. Intensity decay corresponds to $T_{1/2}$ = 112 ± 10 hours If the effect is due to the stimulated discharge of ^{186m}Re nuclei, then the discharge of ~ 10^{-5} % of the ^{186m}Re nuclei is stimulated. We have to assume that there is an unknown excited state in the ^{186}Re nucleus with $T_{1/2}$ for several days, which is populated upon stimulated discharge of the ^{186m}Re isomers. ## The difference in the known results of measuring the ^{186}Re half-live | ¹⁸⁶ Re production | Method | Measurement | | |--|-------------------------------|----------------|---------------------------| | method | measurements | duration, days | $T_{1/2, g}$, hours | | 185 Re $(n, \gamma)^{186}$ Re | $4\pi \gamma$ -ionization | 33 | 89.239 ± 0.026 | | | chamber | | (Schonfeld et al, 1994) | | ¹⁸⁵ Re (n, γ) ¹⁸⁶ Re | V.1.V.1. 10 V.1 | 21 | 89.25 ± 0.07 [6] | | | | | (Coursey et al., 1991) | | $^{185}Re\ (n_{th}\ ,\ \gamma)\ ^{186}Re$ | γ – spectra | 18 | 90.600 ± 0.024 | | | | | (Abzouzi et al., 1989.) | | $^{186}W(p, n)^{186}Re$ | | 36 | 88.35 ± 0.16 | | | | | (Our previous work, 2018) | Accuracy is shown at the one standard deviation level. - The discrepancy in the $T_{1/2,\,g}$ measurement results is another indication of the possibility of the existence of an unknown isomeric level in the ^{186}Re nucleus. - The measurement technique did not take into account the possible dependence of the observed $T_{1/2,\,g}$ on the method of obtaining ^{186}Re nuclei, on the duration of measurements, and on the time of the beginning of measurements after the end of target irradiation. #### The idea of the experiment - It is possible that the new isomer can be populated in the (p, n) reaction of formation of the ^{186}Re nucleus from ^{186}W . - Population of a new isomer in this reaction would lead for γ -quanta from an irradiated source to the dependence of the γ -intensity I_{137} (t) on time t after the formation of ^{186}Re nuclei, which differs from the simple exponent associated with the decay of the ground state of ^{186}Re with a half-life of $T_{1/2,\,g}$ = 89.239 hours # Experimental method | Irradiation | Our work (2018) | Present work | | | |-----------------|-----------------|--------------|--|--| | parameters | | | | | | p - current, μΑ | 4 | 4 | | | | Exposition, min | 15 | 100 | | | | Measurement method | Our work (2018) | Present work | | |--|--------------------------|-----------------------------------|--| | Measurement time after the end of irradiation, days | 0,2 - 36 | 30 - 105 | | | HPGe detector | Ø25 x 15 mm | 150 cm ³ with the well | | | Measurement geometry | 10 mm above the detector | In the well | | | Initial loading of the spectrometer, s ⁻¹ | ~ 10 ³ | ~ 10 ³ | | # γ -spectrum of the sample | Stable isotope | ^{180}W | ¹⁸² W | | ¹⁸³ W | ¹⁸⁴ W | | 186W | |--|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------| | Nature content, % | 0,13 | 26,3 | | 14,3 | 30,67 | | 28,6 | | Reaction products (p, n) , $(p, 2n)$ | ¹⁸⁰ Re | ¹⁸¹ Re | ¹⁸² Re | ¹⁸³ Re | ¹⁸⁴ Re | ^{184m} Re | ¹⁸⁶ Re | | $T_{1/2}$ | 2,4 min | 20 h | 64 h | 70 d | 38 d | 165 d | 90, 64 h | | Decay mode | e⁻ capture | | | | | β | | #### Method for processing the results of γ -spectra measurements - γ -spectra were measured sequentially in time with an exposure of 12 hours. - The areas of γ -lines in the spectra were determined by fitting Gaussian peaks by the least squares method; in this case, the center of the line, its half-width, and area were determined. - Half-lives were determined by fitting the decay curve with one or two exponents. The exponents were inscribed using the least squares method. - The γ -lines of radionuclides in the spectrum remained in place with an accuracy of 0.2 keV. Determination of $T_{1/2}$ for ^{183}Re is a measurement correctness test. The decay curve is plotted by measuring the intensity of γ -quanta 291 keV from ^{183}Re . ## Time variation of the intensity of the 137 keV γ -line Background bias model when the measurement time is $t < T_o$. Constant $\lambda = 0.0064~{\rm d}^{-1}$. $$I_{bac.}(t) = (107900 \times 0.7) \times e^{\lambda (T_o - t)} + (107900 \times 0.3)$$ The model takes into account: - The value of the intensity I_{137} at the time T_o . - Exponential decay of I_{137} at $t > T_o$. - Requirement for the decay curve to match the half-life of ^{186}Re at the start of measurements. # Intensity of 137 keV γ -quanta emitted by ^{186}Re Half-life, calculated from different parts of the decay curve, increases over time after the formation of ^{186}Re . The time dependence of the I_{137} intensity corresponds to the existence of the new isomer in the ^{186}Re nucleus. However, for complete unambiguity of such a conclusion, it is necessary to carry out similar measurements again using an improved technique: - •The target's 186W isotope enrichment should be much better than 97%. - •The target must be free of impurities, in particular iron. - •Measurements should be carried out in geometry without summation of X-ray lines in the spectrum. # Thanks!