

P.-A. Söderström

M. Cuciuc

Yu. Penionzhkevich

Yu. Sobolev

 $S. \ Stukalov$

Neutron production in (α,n) reactions

presenter: Dmitry Testov

The Extreme Light Infrastructure

- ELI Beamlines, Dolní Břežany, Prague, Czech Republic, focus on multidisciplinary applications in molecular, biomedical and material sciences
- ELI Attosecond Light Pulse Source, Szeged, Hungary focus on ultrashort pulses with high repetition rate by taking snap-shots in the attosecond scale
- ELI Nuclear Physics, Măgurele, Romania, focus on laser and gamma-beam based nuclear physics

Photo-Nuclear Reactions

Bremsstrahlung Mono-energetic source

Photo-Nuclear Reactions

Bremsstrahlung Mono-energetic source

Photo-Nuclear Reactions

Intensity

Characteristic Response of Atomic Nucl. to EM Radiation

Photons from Laser Compton Backscattering (LCB)

- tunable energy
- Almost 100% linearly polarized beam

- Populate excited states by resonant scattering of γ rays • Measure total (Γ) and partial (Γ_f) level
- widths following γ decay Narrow bandwidth: selective population
- Scan for new resonances
- Completely model independent measurements
- Very clean angular distributions for J^{π} measurements

Fluorine

Physics with the gamma beam system

- Nuclear Resonance Fluourescence spectroscopy using (γ, γ') reactions and the ELIADE γ -ray spectrometer (8 x Clover 32-seg detectors)
- Pygmy- and giant resonances, level population following neutron emission, and neutron resonances, using (γ, n) reactions in ELIGANT-GN (15 x LaBr(Ce), 19 x CeBr, x 37 EJ301, 25 x Li-glass) and ELIGANT-TN (28 ³He-filled tubes)
- Photo-induced fission cross-sections, fragment distributions, and fission isomers with the ELI-BIC and ELITHGEM instruments
- Properties of key astrophysics (γ, p) and (γ, α) reactions using ELISSA Si array and ELI-eTPC time-projection chamber
- High-intensity positron beamline for material research and characterization
- Applications of Nuclear Resonance Fluourescence for non-proliferation, waste-management and cultural heritage with ELIADE

Physics with the gamma beam system

- Nuclear Resonance Fluourescence spectroscopy using (γ, γ') reactions and the ELIADE γ -ray spectrometer (8 x Clover 32-seg detectors)
- Pygmy- and giant resonances, level population following neutron emission, and neutron resonances, using (γ, n) reactions in ELIGANT-GN (15 x LaBr(Ce), 19 x CeBr, x 37 EJ301, 25 x Li-glass) and ELIGANT-TN (28 3 He-filled tubes)
- Photo-induced fission cross-sections, fragment distributions, and fission isomers with the ELI-BIC and ELITHGEM instruments
- Properties of key astrophysics (γ, p) and (γ, α) reactions using ELISSA Si array and ELI-eTPC time-projection chamber
- High-intensity positron beamline for material research and characterization
- Applications of Nuclear Resonance Fluourescence for non-proliferation, waste-management and cultural heritage with FLIADF

ELIGANT-TN: array of ³He filled counters

High efficiency

Zero energy threshold

Zero cross-talk(multiplicity)

Low internal background

Perfect gamma separation

Easy in use/ geometry

Physics cases

- Nucleosynthesis in the rare astrophysical proton-capture process (p-process)
- Compilation and verification of (γ, n) cross sections for next generation nuclear reactor applications

ELIGANT neutron detector

- Moderated ³He counter, of 28 gas tubes
- Pressure in the tubes 12 bar
- Efficiency simulated in Geant4 and MCNP
- Simulations confirmed with a PuBe neutron source (blue)
- Average of neutron spectrum can be extracted from the ring-to-ring ratio

Non-resonant ---- efficiency

Non-Resonant Reactions

 $^{51}V(p,n)^{51}Cr$

- $E_p < 3$ MeV (one reaction channels)
- $T_{1/2}(^{51}Cr)=27.7$ days
- \bullet e-capture, E_{γ} =320 keV BR=9.91%

$$\epsilon = rac{\mathit{Nn}}{\mathit{N}(\mathit{E}_{\gamma})} \, rac{\mathit{online ELIGANT}}{\mathit{offline }} \, \, \mathit{HPGe}$$

Verification of efficiency curve

 $\begin{array}{c|c} & 11B(\alpha, \mathsf{n}) & 13C(\alpha, \mathsf{n}) \\ \hline \bullet & \text{Resonances are well-mapped} \\ \end{array}$

 \bullet Γ_R , $(\omega \gamma)_R$, E_x

$$\epsilon = rac{\mathit{Nn}}{\mathit{N}(\Gamma_R, (\omega\gamma)_R, E_x)} \, rac{\mathit{ELIGANT}}{\mathit{Resonance}}$$

$$N_0 = \frac{I_{\alpha} \cdot t \cdot \hbar^2 \cdot \pi^2 \cdot (\omega \gamma)_R \cdot N_A \cdot \rho}{\mu \cdot A \cdot E_R} \cdot (\frac{dE}{dZ})^{-1}$$

	E_{lpha} MeV	E _n MeV	Γ_R ke ${\sf V}$	$(\omega\gamma)_R$ eV	E_{x} ke V
$^{11}B(lpha,n)$	0.606	0.56	2.5·10 ³	0.175	11436
$^{13}C(\alpha,n)$	1.053	1.5	11.9	0.172	7165
$^{13}C(\alpha,n)$	1.585	3.2	<1	0.172	7165

C.R. Brune et al, Phys. Rev. C 48 (1993) 3119 T.R. Wang et al, Phys. Rev. C 43 (1991) 883

Verification of efficiency curve

9-F-19(A,N)11-NA-22

0.6 Cross Section (barns) 1978 Balakrishnan Low background measurements 0.4 238 lpha-chains 0.2 ²⁷**A**I ²⁶**Fe** 28,29,30**Si** 60,62,64 NI: 46,48 Incident Energy (MeV)

The 9 MV Tandem accelerator

ELI-NP Photo-Nuclear Reactions ELIGANT-TN alpha induced reactions Experiment Fluorine To take home

ELIGANT at IFIN

M. Krzysiek: Nuclear Photonics, June 24 - 28, 2018, Brasov, Romania

ELI-NP Photo-Nuclear Reactions ELIGANT-TN alpha induced reactions Experiment Fluorine To take home

ELIGANT at IFIN

To take home

Neutron production in (α,n) reactions

1. Response of ELIGAN-TN to monoenergetic neutron sources

$$^{51}V(p,n)^{51}Cr; \ ^{11}B(\alpha,n), \ ^{13}C(\alpha,n)$$

2. alpha-induced reactions for nuclear safeguards and low-background measurements $^{19}F(\alpha,n)$ ^{27}AI $^{28,29,30}Si$ ^{26}Fe $^{60,62,64}Ni$ $^{46,48}Ti$

$$^{19}\mathsf{F}(lpha,\mathsf{n})$$
 $^{27}\mathsf{Al}$ $^{28,29,30}\mathsf{Si}$ $^{26}\mathsf{Fe}$ $^{60,62,64}\mathsf{Ni}$ $^{46,48}\mathsf{Ti}$

3. (γ, n) reaction cross-sections using VEGA beams $(CS, \langle E_n \rangle, N(\Theta))$

ELIGANT-TN:

28 counters 3 He (12 atm.); \sim 37% (flat 1 MeV<E_n);

To take home

Neutron production in (α,n) reactions

1. Response of ELIGAN-TN to monoenergetic neutron sources

2. alpha-induced reactions for nuclear safeguards and low-background measurements 19 F(lpha,n) 27 Al 28,29,30 Si 26 Fe 60,62,64 Ni 46,48 Ti

Looking for collaboration

3. (γ, \mathbf{n}) reaction cross sections using vizor beams (CS, $\langle E_n \rangle$, N(Θ)

Thank you for you attention!

ELIGANT-TN

28 counters 3 He (12 atm.); \sim 37% (flat 1 MeV<E $_{n}$)

