STRUCTURE OF LEVELS AND ELECTROMAGNETIC TRANSITION RATES IN ODD-ODD NUCLEI CLOSE TO DOUBLY-MAGIC NEUTRON DEFICIENT ¹⁰⁰Sn

V. I. Isakov¹

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300 Russia

In our previous papers, we extensively studied odd-odd nuclei adjacent to doubly magical stable nuclide ²⁰⁸Pb, as well as to also doubly magical neutron excess ¹³²Sn. To date, some experimental information has emerged also about the properties of such nuclei in the vicinity of an extremely neutron deficient and also doubly magical ¹⁰⁰Sn. In our calculations of odd-odd nuclei close to ¹⁰⁰Sn, we applied random phase approximation and multi-particle shell model, both based on the phenomenological nuclear potential [1] and effective two-body interaction [2], which parameters were defined by us before. The subject of our interest were ${}^{98}_{49}In_{49}$, ${}^{100}_{49}In_{51}$, $^{98}_{47}$ Ag₅₁ and $^{94}_{45}$ Rh₄₉. In these nuclei we determined energy spectra and E2, M1 transition rates. Effective transition operators were also defined by us before [3], and they successfully described E2 and M1 transitions in nuclei close to ²⁰⁸Pb and ¹³²Sn. In particular, the values of proton and neutron effective charges were $e_p = 1.6|e|$ and $e_n = 0.9|e|$. In our case, the value of $e_p \approx 1.6|e|$ was also obtained by us by using the experimental $T_{1/2}$ values of the $8^+_1 \rightarrow 6^+_1$ and $6_1^+ \rightarrow 4_1^+$ transitions in ${}^{98}_{48}\text{Cd}_{50}$ [4], as well as our RPA calculation for these cases. However, the energy of an analogous $6_1^+ \rightarrow 4_1^+$ transition and its half-life in ${}^{102}_{50}\text{Sn}_{52}$ are known with great uncertainty [4, 5] and thus the value of neutron effective charge in nuclei close to¹⁰⁰Sn is also very uncertain [5]: $e_n = 2.3(+0.6 - 0.2)|e|$. Such a large value of neutron effective charge is a subject of discussions. Here, we defined the values of e_p and e_n from the joint description of the $4_1^+ \rightarrow 6_1^+(gr.st.)$ and $2_1^+ \rightarrow 4_1^+(gr.st.)$ transitions in ⁹⁸Ag and ⁹⁴Rh. The result is $e_p \approx 1.6$ and $e_n \approx 2.8$. Mention that the obtained by us value of e_n agrees with the experimental results [6, 7], considered together with theoretical calculations performed by us for the $6_1^+ \rightarrow 4_1^+$ transition in 102 Sn [2].

⁹⁸₄₇Ag₅₁: $B(E2; 6_1^+ \to 4_1^+)_{exp} = 80.3(3.5); 4.70(e_n = 0.9); 49.8(e_n = 2.3); 77.5(e_n = 2.8)$ ⁹⁴₄₅Rh₄₉: $B(E2; 4_1^+ \to 2_1^+)_{exp} = 105.8(10.0); 13.4(e_n = 0.9); 75.8(e_n = 2.3); 110.5(e_n = 2.8)$

- 1. V. I. Isakov et al., Eur. Phys. J. A 14, 29 (2002).
- 2. V. I. Isakov, Phys. At. Nucl. 76, No 7, 828 (2013).
- 3. S. A. Artamonov, et al., Sov. J. Nucl. Phys. 36, No 4, 486 (1982).
- 4. https://www-nds.bnl.gov/ensdf/
- 5. M. Lipoglavšek et al., Phys. Lett. B **440**, 246 (1998).

6. T. Faestermann, Spectroscopy of $N \sim Z$ Nuclei: ¹⁰⁰Sn and Neighbours, https://indico.ific. uv.es/event/349/contributions/6172/ attachments/4036/4532/Faestermann.pdf, 24 (2011).

7. M. Górska, Recent results in the region of ^{100}Sn , https://indico.in2p3.fr/ event/12970/ contriburions/12367/attachments/10498/13010/SSNET_gorska_2016_2.pdf, 36 (2016).

¹E-mail visakov@thd.pnpi.spb.ru

		Quadr. moment Q_2			
Level	Energy	$e_p = 1.6$	$e_p = 1.6$	$e_p = 1.6$	Magn.
		$e_n = 0.9$	$e_n = 2.3$	$e_n = 2.8$	moment
1_{1}^{+}	$2.697(x+2.720)^*$	3.96	1.57	0.715	3.48
2_1^+	$0.674(x+0.672)^*$	12.5	9.77	8.78	5.64
2^+_2	$1.494(x+1.423)^*$	6.03	12.2	14.5	3.67
3_1^+	$0.247(x+0.236)^*$	19.8	31.1	35.2	5.30
3_2^+	1.174	10.4	24.8	30.0	3.81
4_1^+	$0.100(x+0.095)^*$	23.3	38.2	43.6	4.87
4_{2}^{+}	1.019	11.4	23.6	27.9	4.39
5_1^+	$0.094 \ (x)^*$	23.3	32.7	36.0	4.97
5_{2}^{+}	0.937	11.7	17.5	19.6	5.02
6_1^+	gr. st. (gr. st.)*	19.9	15.5	13.9	5.00
6^+_2	0.941	13.5	12.9	12.7	5.74
7_1^+	0.284	17.4	-1.62	-8.43	5.32
7_{2}^{+}	0.872	12.4	-1.52	-6.49	6.43
$ 8_1^+$	1.354	14.5	-9.51	-18.1	7.22

Table 1. Energy levels and electromagnetic moments of $^{100}_{49}$ In₅₁. Experimental energies are marked by the asterisks. Energy of the 5⁺₁ state (x) is not known in the experiment, but it follows that this state is a low-lying isomer.

		Qua			
Level	Energy	$e_p = 1.6$	$e_p = 1.6$	$e_p = 1.6$	Magn.
		$e_n = 0.9$	$e_n = 2.3$	$e_n = 2.8$	moment
1_1^+	$2.183 (2.165)^*$	1.178	-0.949	-1.708	3.46
2_1^+	$0.531 \ (0.515)^*$	3.720	-1.808	-3.782	5.90
2^+_2	1304	5.633	13.88	16.83	3.41
3_1^+	$0.192 \ (0.168)^*$	12.01	21.68	25.13	5.16
3_2^+	$1.253 \ (1.066 \ ?)^*$	7.060	17.44	21.15	3.80
4_1^+	$0.085 \ (0.107)^*$	13.82	25.50	29.67	4.92
4_2^+	1.092	7.104	15.67	18.73	4.37
5_1^+	0.087	12.03	18.28	20.51	4.92
5^+_2	1.105	6.279	10.37	11.83	5.02
6_1^+	gr.st. $(gr.st.)^*$	7.737	3.315	1.736	5.06
6^+_2	1.029	4.796	2.278	1.378	5.72
7_1^+	$0.201 \ (0.220)^*$	1.449	-17.90	-24.81	5.29
7_{2}^{+}	1.063	2.755	-8.261	-12.19	6.46
8_1^+	$1.167 \ (1.154)^*$	0.212	-21.06	-28.66	7.21

Table 2. Energy levels and electromagnetic moments of levels in ${}^{98}_{47}Ag_{51}$. Experimental energies are marked by the asterisks.