STRUCTURE OF LEVELS AND ELECTROMAGNETIC TRANSITION RATES IN ODD-ODD NUCLEI CLOSE TO DOUBLY-MAGIC NEUTRON DEFICIENT ${ }^{100}$ Sn

V. I. Isakov ${ }^{1}$
Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300 Russia

In our previous papers, we extensively studied odd-odd nuclei adjacent to doubly magical stable nuclide ${ }^{208} \mathrm{~Pb}$, as well as to also doubly magical neutron excess ${ }^{132} \mathrm{Sn}$. To date, some experimental information has emerged also about the properties of such nuclei in the vicinity of an extremely neutron deficient and also doubly magical ${ }^{100} \mathrm{Sn}$. In our calculations of odd-odd nuclei close to ${ }^{100} \mathrm{Sn}$, we applied random phase approximation and multi-particle shell model, both based on the phenomenological nuclear potential [1] and effective two-body interaction [2], which parameters were defined by us before. The subject of our interest were ${ }_{49}^{98} \mathrm{In}_{49},{ }_{49}^{100} \mathrm{In}_{51}$, ${ }_{47}^{98} \mathrm{Ag}_{51}$ and ${ }_{45}^{94} \mathrm{Rh}_{49}$. In these nuclei we determined energy spectra and $E 2, M 1$ transition rates. Effective transition operators were also defined by us before [3], and they successfully described $E 2$ and $M 1$ transitions in nuclei close to ${ }^{208} \mathrm{~Pb}$ and ${ }^{132} \mathrm{Sn}$. In particular, the values of proton and neutron effective charges were $e_{p}=1.6|e|$ and $e_{n}=0.9|e|$. In our case, the value of $e_{p} \approx 1.6|e|$ was also obtained by us by using the experimental $T_{1 / 2}$ values of the $8_{1}^{+} \rightarrow 6_{1}^{+}$and $6_{1}^{+} \rightarrow 4_{1}^{+}$transitions in ${ }_{48}^{98} \mathrm{Cd}_{50}$ [4], as well as our RPA calculation for these cases. However, the energy of an analogous $6_{1}^{+} \rightarrow 4_{1}^{+}$transition and its half-life in ${ }_{50}^{102} \mathrm{Sn}_{52}$ are known with great uncertainty $[4,5]$ and thus the value of neutron effective charge in nuclei close $t^{100} \mathrm{Sn}$ is also very uncertain [5]: $e_{n}=2.3(+0.6-0.2)|e|$. Such a large value of neutron effective charge is a subject of discussions. Here, we defined the values of e_{p} and e_{n} from the joint description of the $4_{1}^{+} \rightarrow 6_{1}^{+}$(gr.st.) and $2_{1}^{+} \rightarrow 4_{1}^{+}$(gr.st.) transitions in ${ }^{98} \mathrm{Ag}$ and ${ }^{94} \mathrm{Rh}$. The result is $e_{p} \approx 1.6$ and $e_{n} \approx 2.8$. Mention that the obtained by us value of e_{n} agrees with the experimental results [6, 7], considered together with theoretical calculations performed by us for the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition in ${ }^{102} \mathrm{Sn}$ [2].
${ }_{47}^{98} \mathrm{Ag}_{51}: \quad B\left(E 2 ; 6_{1}^{+} \rightarrow 4_{1}^{+}\right)_{\text {exp }}=80.3(3.5) ; 4.70\left(e_{n}=0.9\right) ; 49.8\left(e_{n}=2.3\right) ; 77.5\left(e_{n}=2.8\right)$
${ }_{45}^{94} \mathrm{Rh}_{49}: \quad B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)_{e x p}=105.8(10.0) ; 13.4\left(e_{n}=0.9\right) ; 75.8\left(e_{n}=2.3\right) ; 110.5\left(e_{n}=2.8\right)$

1. V. I. Isakov et al., Eur. Phys. J. A 14, 29 (2002).
2. V. I. Isakov, Phys. At. Nucl. 76, No 7, 828 (2013).
3. S. A. Artamonov, et al., Sov. J. Nucl. Phys. 36, No 4, 486 (1982).
4. https://www-nds.bnl.gov/ensdf/
5. M. Lipoglavšek et al., Phys. Lett. B 440, 246 (1998).
6. T. Faestermann, Spectroscopy of $N \sim Z$ Nuclei: ${ }^{100}$ Sn and Neighbours, https://indico.ific. uv.es/event/349/contributions/6172/ attachments/4036/4532/Faestermann.pdf, 24 (2011).
7. M. Górska, Recent results in the region of ${ }^{100}$ Sn, https://indico.in2p3.fr/ event/12970/ contriburions/12367/attachments/10498/13010/SSNET_gorska_2016_2.pdf, 36 (2016).
[^0]Table 1. Energy levels and electromagnetic moments of ${ }_{49}^{100} \mathrm{In}_{51}$. Experimental energies are marked by the asterisks. Energy of the 5_{1}^{+}state (x) is not known in the experiment, but it follows that this state is a low-lying isomer.

Level	Energy	Quadr. moment Q_{2}			Magn. moment
		$\begin{aligned} & \hline e_{p}=1.6 \\ & e_{n}=0.9 \end{aligned}$	$\begin{aligned} & e_{p}=1.6 \\ & e_{n}=2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & e_{p}=1.6 \\ & e_{n}=2.8 \end{aligned}$	
1_{1}^{+}	$2.697(x+2.720)^{*}$	3.96	1.57	0.715	3.48
2_{1}^{+}	$0.674(x+0.672)^{*}$	12.5	9.77	8.78	5.64
2_{2}^{+}	$1.494(x+1.423) *$	6.03	12.2	14.5	3.67
3_{1}^{+}	$0.247(x+0.236) *$	19.8	31.1	35.2	5.30
3_{2}^{+}	1.174	10.4	24.8	30.0	3.81
4_{1}^{+}	$0.100(x+0.095)^{*}$	23.3	38.2	43.6	4.87
4_{2}^{+}	1.019	11.4	23.6	27.9	4.39
$5{ }_{1}^{+}$	$0.094(x)^{*}$	23.3	32.7	36.0	4.97
5_{2}^{+}	0.937	11.7	17.5	19.6	5.02
6_{1}^{+}	gr. st. (gr. st.)*	19.9	15.5	13.9	5.00
6_{2}^{+}	0.941	13.5	12.9	12.7	5.74
7_{1}^{+}	0.284	17.4	-1.62	-8.43	5.32
7_{2}^{+}	0.872	12.4	-1.52	-6.49	6.43
8_{1}^{+}	1.354	14.5	-9.51	-18.1	7.22

Table 2. Energy levels and electromagnetic moments of levels in ${ }_{47}^{98} \mathbf{A g}_{51}$. Experimental energies are marked by the asterisks.

Level	Energy	Quadr. moment Q_{2}			
		$e_{p}=1.6$	$e_{p}=1.6$	$e_{p}=1.6$	Magn.
$e_{n}=0.9$		$e_{n}=2.8$	moment		
1_{1}^{+}	$2.183(2.165)^{*}$	1.178	-0.949	-1.708	3.46
2_{1}^{+}	$0.531(0.515)^{*}$	3.720	-1.808	-3.782	5.90
2_{2}^{+}	1304	5.633	13.88	16.83	3.41
3_{1}^{+}	$0.192(0.168)^{*}$	12.01	21.68	25.13	5.16
3_{2}^{+}	$1.253(1.066 ?)^{*}$	7.060	17.44	21.15	3.80
4_{1}^{+}	$0.085(0.107)^{*}$	13.82	25.50	29.67	4.92
4_{2}^{+}	1.092	7.104	15.67	18.73	4.37
5_{1}^{+}	0.087	12.03	18.28	20.51	4.92
5_{2}^{+}	1.105	6.279	10.37	11.83	5.02
6_{1}^{+}	gr.st. (gr.st.)*	7.737	3.315	1.736	5.06
6_{2}^{+}	1.029	4.796	2.278	1.378	5.72
7_{1}^{+}	$0.201(0.220)^{*}$	1.449	-17.90	-24.81	5.29
7_{2}^{+}	1.063	2.755	-8.261	-12.19	6.46
8_{1}^{+}	$1.167(1.154)^{*}$	0.212	-21.06	-28.66	7.21

[^0]: ${ }^{1}$ E-mail visakov@thd.pnpi.spb.ru

