LXXI International conference "NUCLEUS –2021. Nuclear physics and elementary particle physics. Nuclear physics technologies"

Contribution ID: 35

Type: Poster report

STRUCTURE OF LEVELS AND ELECTROMAGNETIC TRANSITION RATES IN ODD-ODD NUCLEI CLOSE TO DOUBLY-MAGIC NEUTRON DEFICIENT ¹⁰⁰Sn

Tuesday 21 September 2021 18:35 (5 minutes)

In our previous papers, we extensively studied odd-odd nuclei adjacent to doubly magical stable nuclide ²⁰⁸Pb, as well as to also doubly magical neutron excess ¹³²Sn. To date, some experimental information has emerged also about the properties of such nuclei in the vicinity of an extremely neutron deficient and also doubly magical ¹⁰⁰Sn. In our calculations of odd-odd nuclei close to ¹⁰⁰Sn, we applied random phase approximation and multi-particle shell model, both based on the phenomenological nuclear potential [1] and effective two-body interaction [2], which parameters were defined by us before. The subject of our interest were ${}^{98}_{49}$ In₄₉, $^{100}_{49}$ In₅₁, $^{98}_{47}$ Ag₅₁ and $^{94}_{45}$ Rh₄₉. In these nuclei we determined energy spectra and E2, M1 transition rates. Effective transition operators were also defined by us before [3], and they successfully described E2 and M1 transitions in nuclei close to $^{208}\mathrm{Pb}$ and $^{132}\mathrm{Sn}.$ In particular, the values of proton and neutron effective charges were $e_p = 1.6|e|$ and $e_n = 0.9 |e|$. In our case, the value of $e_p \approx 1.6 |e|$ was also obtained by us by using the experimental $T_{1/2}$ values of the $8^+_1 \rightarrow 6^+_1$ and $6^+_1 \rightarrow 4^+_1$ transitions in ${}^{98}_{48}$ Cd₅₀ [4], as well as our RPA calculation for these cases. However, the energy of an analogous $6^+_1 \rightarrow 4^+_1$ transition and its half-life in $^{102}_{50}$ Sn₅₂ are known with great uncertainty [4, 5] and thus the value of neutron effective charge in nuclei close to¹⁰⁰Sn is also very uncertain [5]: $e_n = 2.3(+0.6 - 0.2)|e|$. Such a large value of neutron effective charge is a subject of discussions. Here, we defined the values of e_p and e_n from the joint description of the $4_1^+ \rightarrow 6_1^+(gr.st.)$ and $2_1^+ \rightarrow 4_1^+(gr.st.)$ transitions in ⁹⁸Ag and ⁹⁴Rh. The result is $e_p \approx 1.6$ and $e_n \approx 2.8$. Mention that the obtained by us value of e_n agrees with the experimental results [6, 7], considered together with theoretical calculations performed by us for the $6_1^+ \rightarrow 4_1^+$ transition in ¹⁰²Sn [2]. 1. V. I. Isakov et al., Eur. Phys. J. A {\bf14}, 29 (2002). 2. V. I. Isakov, Phys. At. Nucl. {\bf76}, No 7, 828 (2013). 3. S. A. Artamonov, et al., Sov. J. Nucl. Phys. {\bf36}, No 4, 486 (1982). 4. https://www-nds.bnl.gov/ensdf/ 5. M. Lipoglavšek et al., Phys. Lett. B {\bf440}, 246 (1998). 6. T. Faestermann, {\em Spectroscopy of N \sim Z Nuclei: ¹⁰⁰Sn and Neighbours}, https://indico.ific.\uv.es/event/349/contributions/6172 attachments/4036/4532/Faestermann.pdf, 24 (2011).

 M. Górska, {\em Recent results in the region of ¹⁰⁰Sn}, https://indico.in2p3.fr/ event/12970/\\contriburions/12367/attachments/10498 36 (2016).

Primary author: ISAKOV, Vadim (PNPI NRC KI St.-Petersburg)

Presenter: ISAKOV, Vadim (PNPI NRC KI St.-Petersburg)

Session Classification: Poster session (Experimental and theoretical studies of the properties of atomic nuclei)

Track Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei.