Contribution ID: 35 Type: Poster report ## STRUCTURE OF LEVELS AND ELECTROMAGNETIC TRANSITION RATES IN ODD-ODD NUCLEI CLOSE TO DOUBLY-MAGIC NEUTRON DEFICIENT 100 Sn Tuesday 21 September 2021 18:35 (5 minutes) In our previous papers, we extensively studied odd-odd nuclei adjacent to doubly magical stable nuclide ²⁰⁸Pb, as well as to also doubly magical neutron excess 132 Sn. To date, some experimental information has emerged also about the properties of such nuclei in the vicinity of an extremely neutron deficient and also doubly magical ¹⁰⁰Sn. In our calculations of odd-odd nuclei close to ¹⁰⁰Sn, we applied random phase approximation and multi-particle shell model, both based on the phenomenological nuclear potential [1] and effective two-body interaction [2], which parameters were defined by us before. The subject of our interest were ${}_{49}^{98}\text{In}_{49}$, $^{100}_{49} In_{51}, ^{98}_{47} Ag_{51}$ and $^{94}_{45} Rh_{49}$. In these nuclei we determined energy spectra and E2, M1 transition rates. Effective transition operators were also defined by us before [3], and they successfully described E2 and M1 transitions in nuclei close to $^{208}\mathrm{Pb}$ and $^{132}\mathrm{Sn}.$ In particular, the values of proton and neutron effective charges were $e_p = 1.6|e|$ and $e_n=0.9|e|$. In our case, the value of $e_p\approx 1.6|e|$ was also obtained by us by using the experimental $T_{1/2}$ values of the $8^+_1 ightarrow 6^+_1$ and $6_1^+ \rightarrow 4_1^+$ transitions in $^{98}_{48}\text{Cd}_{50}$ [4], as well as our RPA calculation for these cases. However, the energy of an analogous $6_1^+ \to 4_1^+$ transition and its half-life in $_{50}^{102}$ Sn₅₂ are known with great uncertainty [4, 5] and thus the value of neutron effective charge in nuclei close to 100 Sn is also very uncertain [5]: $e_n = 2.3(+0.6-0.2)|e|$. Such a large value of neutron effective charge is a subject of discussions. Here, we defined the values of e_p and e_n from the joint description of the $4_1^+ \to 6_1^+ (gr.st.)$ and $2_1^+ \to 4_1^+ (gr.st.)$ transitions in ⁹⁸Ag and 94 Rh. The result is $e_p \approx 1.6$ and $e_n \approx 2.8$. Mention that the obtained by us value of e_n agrees with the experimental results [6, 7], considered together with theoretical calculations performed by us for the - 1. V. I. Isakov et al., Eur. Phys. J. A {\bf14}, 29 (2002). - 2. V. I. Isakov, Phys. At. Nucl. {\bf76}, No 7, 828 (2013). - 3. S. A. Artamonov, et al., Sov. J. Nucl. Phys. {\bf36}, No 4, 486 (1982). - 4. https://www-nds.bnl.gov/ensdf/ $6_1^+ \rightarrow 4_1^+$ transition in ¹⁰²Sn [2]. - 5. M. Lipoglavšek et al., Phys. Lett. B $\{\bf440\}$, 246 (1998). - 6. T. Faestermann, {\em Spectroscopy of N \sim Z Nuclei: 100 Sn and Neighbours}, https://indico.ific.\\uv.es/event/349/contributions/6172 attachments/4036/4532/Faestermann.pdf, 24 (2011). - 7. M. Górska, {\em Recent results in the region of \$^{100}\$Sn}, https://indico.in2p3.fr/ event/12970/\\contriburions/12367/attachments/10498 36 (2016). Primary author: ISAKOV, Vadim (PNPI NRC KI St.-Petersburg) Presenter: ISAKOV, Vadim (PNPI NRC KI St.-Petersburg) **Session Classification:** Poster session (Experimental and theoretical studies of the properties of atomic nuclei) **Track Classification:** Section 1. Experimental and theoretical studies of the properties of atomic nuclei.