Possibility of identifying the virtual component in scission neutrons

Saturday, 25 September 2021 17:35 (25 minutes)

Experimental measurements of angular and energy distributions of fission neutrons $n(\theta, E)$ per fission event were carried out in [1-4] assuming that $n(\theta, E)=n_{e v}(\theta, E)+n_{s c}(\theta, E)$, where E is asymptotic kinetic energy of a neutron, θ is angle between the directions of the outgoing neutrons and the light fission fragment, $n_{e v}(\theta, E)$ is number of prompt neutrons evaporated from light and heavy fission fragment, $n_{s c}(\theta, E)$ is number of scission neutrons. These measurements corresponded to the cases of spontaneous fission of the ${ }^{252} \mathrm{Cf}$ nucleus and thermal neutron-induced fission of ${ }^{233} \mathrm{U},{ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$ target nuclei. Also, in these papers a theoretical calculation of the prompt neutron distributions $n_{e v}(\theta, E)$ was carried out. The value $B(\theta, E)=\frac{n(\theta, E)}{n_{e v}(\theta, E)}=1+\frac{n_{s c}(\theta, E)}{n_{e v}(\theta, E)}$ was further constructed, and it can be used to calculate $n_{s c}(\theta, E)$ by the formula $n_{s c}(\theta, E)=\frac{(B(\theta, E)-1) n(\theta, E)}{B(\theta, E)}$.
Unfortunately, the approaches used for calculations $n_{s c}(\theta, E)$ require a certain adjustment, since at definite angles θ they lead to $B(\theta, E)<1$, which corresponds to $n_{s c}(\theta, E)<0$, which is impossible due to the positive definition of $n_{s c}(\theta, E)$.

In the present paper, for all studied nuclei, the appearance of a peak for $n_{s c}(\theta, E)$ in the vicinity of the angle $\theta=90^{\circ}$ for $50^{\circ} \leq \theta \leq 125^{\circ}$ is demonstrated, which is a direct indication of the emission of scission neutrons from the neck of a compound fissile nucleus. At the same time the energy spectrum $n_{s c}(\theta, E)$ in the specified range of angles corresponds to the energies of neutrons lying in the range of $0 \leq E \leq 1 \mathrm{MeV}$. Since these neutrons are emitted from neutron states of a compound fissile nucleus corresponding to binding energies about $(-6) \mathrm{MeV}$, so the appearance of these neutrons in continuous spectrum states with positive energies $0 \leq E \leq 1 \mathrm{MeV}$
and emission angles in the vicinity of the angle $\theta=90^{\circ}$ can be explained [5] by considering the emission of these neutrons from the neck of a compound fissile nucleus analogously to the light particle emission in ternary nuclear fission.

1. A. Vorobyev et al., JETP, 152, 730 (2017).
2. A. Vorobyev et al., JETP, 154, 774 (2018).
3. A. Vorobyev et al., Bull. RAS Ser. Phys. 82, 1373 (2018).
4. A. Vorobyev et al., EPJ Web of Conferences 239, 05008 (2020).
5. S.G. Kadmensky, L.V. Titova, D.E. Lyubashevsky, Phys. Atom. Nucl. 83, 298 (2020).

Primary authors: KUFAEV, Sergey (Voronezh State University); KADMENSKY, Stanislav (Voronezh State University); OTVODENKO, Yana (Voronezh state university)

Presenter: KADMENSKY, Stanislav (Voronezh State University)
Session Classification: Section 2. Experimental and theoretical studies of nuclear reactions

Track Classification: Section 2. Experimental and theoretical studies of nuclear reactions.

