

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Analysis of neutron-induced fission cross-sections of Pb isotopes near the closed neutron shell

M.S. Onegin

Contents

- Experimental fission cross-section of (n,f) reaction for ²⁰⁴Pb, ²⁰⁶⁻²⁰⁸Pb targets
- Review of the earlier analysis of (p,f) and (e,f) reactions with Pb isotopes

fissioning. Fission barriers results.

- Using of Talys code for description of (n,f) reaction
- Hauser-Feshbah compound model
- Level densities
- Fission barriers
- Fitting of fission barriers
- Results and comparing with the previous works

I.V.Ryzhov et al. NIM A 562 (2006) 439-448

Fission and compound cross-sections

I. Ignatyuk A.V., Smirenkin G.N., Itkis M.G. et al approach (Physics of Particles and Nuclei, v.16, #4 (1985))

$$\sigma_f(E_n) = \frac{\pi}{k^2} \sum_J g(J) T_J(E_n) \frac{\Gamma_f^J}{\Gamma_f^J + \Gamma_n^J}$$

$$g(J) = \frac{2J+1}{(2s+1)(2I_0+1)}$$

Fissility

$$P_{f}(\mathsf{J}) = \frac{\Gamma_{f}^{J}}{\Gamma_{f}^{J} + \Gamma_{n}^{J}}; \qquad P_{f}(E_{n}) = \frac{\sigma_{f}(E_{n})}{\sigma_{c}(E_{n})} = \sum_{J} P_{f}(J)\sigma_{c}(J)/\sigma_{c}$$
$$\sigma_{c}(E_{n}) \cong \sigma_{R}(E_{n})$$
$$\sigma_{R}(E_{n}) \equiv \sigma_{non-el}(E_{n}) - \sigma_{comp-el}(E_{n})$$

Fission width

According to Bohr and Wheeler theory of fission:

$$\Gamma_{f}^{J} = \frac{1}{2\pi\rho_{c}(U_{c},J)} \int_{0}^{U_{f}-B_{f}} \rho_{f}(U_{f}-B_{f}-E,J) dE$$

Here

- $U_{c} = E^{*} \Delta_{c}; \qquad \Delta_{c} = 12\chi / \sqrt{A_{c}},$
 - $\chi = 0, 1, 2$ for odd-odd, odd-even or even-even nuclei

$$U_f = E^* - \Delta_f; \quad \Delta_f = 14\chi / \sqrt{A_c},$$

 $\chi = 0, 1, 2$ for odd-odd, odd-even or even-even nuclei

B_f – fission barrier height (first main parameter)

Decay width

According to Weisskopf statistical theory of particle emission:

$$\Gamma_n^J = \frac{(2s+1)m_n}{\left(\pi\hbar\right)^2 \rho_c(U_c,J)} \int_0^{U_n - B_n} \sigma_{inv}(E)\rho_n(U_n - B_n - E,J)EdE$$

$$U_n = E^* - \Delta_n;$$
 $\Delta_c = 12\chi / \sqrt{A_n},$
 $\chi = 0,1,2$ for odd-odd,odd-even or even-even nuclei

I approximation:

$$\sigma_{inv}(E) = \pi \left(r_0 A^{1/3} \right)^2$$

$$\Gamma_n^J = \frac{A_n^{2/3}}{\pi \omega \rho_c(U_c, J)} \int_0^{U_n - B_n} \rho_n(U_n - B_n - E) E dE$$

where

$$\omega = \hbar^2 / 2m_n r_0^2 \approx 10 \text{ MeV}$$

Level densities

¢

$$\rho_f(U,J) = \frac{\rho_f(U)}{2\sqrt{2\pi}\sigma_{\parallel}} \sum_{K=-J}^{J} \exp\left\{-\frac{J(J+1)}{2\sigma_{\perp}^2} - \frac{K^2}{2\sigma_{eff}^2}\right\}$$

$$\sigma_i^2 = \mathfrak{I}_i t \,/\, \hbar^2; \, \mathfrak{I}_{eff} = \mathfrak{I}_\perp \mathfrak{I}_\parallel \,/ \left(\mathfrak{I}_\perp - \mathfrak{I}_\parallel \right)$$

I approximation:

$$\frac{\Gamma_{f}^{J}}{\Gamma_{n}^{J}} = \frac{\omega}{2A^{2/3}} \gamma(J) \frac{\int_{0}^{U_{f}-B_{f}} \rho_{f}(U_{f}-B_{f}-E,0)dE}{\int_{0}^{U_{n}-B_{n}} \rho_{n}(U_{n}-B_{n}-E,0)EdE}$$

where

$$\gamma(J) = \frac{\sqrt{2\pi}K_0}{2J+1} \exp\left[\beta\left(J+1/2\right)^2\right] \operatorname{erf}\left(\frac{J+1/2}{\sqrt{2}K_0}\right)$$

$$\beta = \frac{1}{2} \left(\sigma_{\perp n}^{-2} - \sigma_{\perp f}^{-2} \right); \quad K_0 = \sigma_{eff}^{(f)}$$

$$P_f(E) = \frac{\Gamma_f^0}{\Gamma_n^0} \overline{\gamma}(J_{\max});$$

Fissility **I** approximation:

$$\overline{\gamma}(J_{\max}) = J_{\max}^{-2} \int_{0}^{J_{\max}} (2J+1)\gamma(J) dJ$$

Nucleus-2021

$$\rho_F(U,J) = \frac{(2J+1)}{\sqrt{2}\sigma^3} \frac{\sqrt{\pi}}{24} a^{-1/4} \left(U - \delta\right)^{-5/4} \exp\left[2\sqrt{a(U-\delta)} - \frac{\left(J + 1/2\right)^2}{2\sigma^2}\right]$$
$$\sigma^2 = \frac{6\overline{m}^2}{\pi^2} \sqrt{a(U-\delta)}$$

a – level density parameter δ – odd – even correction

$$\overline{m}^2 \simeq \frac{\pi^2 \mathfrak{I}_0}{6a} \simeq 0.24 A^{2/3}$$

 $a_{f,n}(U,Z,N) = \tilde{a}_{f,n}(A) \Big[1 + \delta W_{f,g}(Z,N) f(U) / U \Big]$ $f(U) = 1 - \exp(-\gamma U) \qquad \delta W_g = M_{exp} - M_{LDM}$

 $a_{f,n}$ – three additional parameters:

 $\tilde{a}_n; \tilde{a}_f / \tilde{a}_n; \delta W_f$

Ignatyuk A.V. et al Journal of Nuclear Physics v.40, 1984, p.1404

$a_n = 0.09$ III MeV, $b_f = 0$, $a_f = 1.050$	$\tilde{a}_n = 0.094A$	MeV^{-1} ;	$\delta W_f = 0;$	$\tilde{a}_{f} = 1.03\tilde{a}$
---	------------------------	--------------	-------------------	---------------------------------

Nuclei	B_f , MeV	a_f , 1/MeV	a_n , 1/MeV
204	23.2	19.6	14.5 - 15.4
206	25.3	19.7	12.5 – 14.9
207	27.0	19.8	12.6 - 14.7
208	27.4	19.9	12.6 - 14.3

RIPL-2,3 fission barriers sistematic (G.N. Smirenkin compilation in RIPL-2 – Nucl.Data Sheets, **110** (2009) p.3107)

Z	А	Element	B _f
82	204	Pb	23.5
82	205	Pb	24.6
82	206	Pb	25.3
82	207	Pb	27.0
82	208	Pb	27.4

n+²⁰⁸Pb

Code TALYS

Hierarchy of reaction steps are considered:

- Direct step ECIS (coupled channel code)
- Pre-equilibrium step (Exciton model)
- Compound multi-step (Hauser-Feshbach model)

Fission and compound cross-sections: Hauser-Feshbach model

$$\sigma_f(J\Pi, E_n) = \sigma_{J\Pi}^C(E_{tot}) \frac{\Gamma_f(J\Pi, E_{tot})}{\Gamma(J\Pi, E_{tot})}$$

 $\Gamma(J\Pi, E_{tot}) = \Gamma_f(J\Pi, E_{tot}) + \Gamma_n(J\Pi, E_{tot}) + \Gamma_\gamma(J\Pi, E_{tot})$

$$\sigma_{f}(E_{n}) = \sum_{J=\text{mod}(I+s,1)}^{I+s+l_{\text{max}}} \sum_{\Pi=-1}^{1} \sigma_{f}(J\Pi, E_{tot})$$

Level densities

$$\rho(E^*, J, \Pi) = K_{vib} K_{rot} \rho_{int}(E^*, J, \Pi)$$

For non-collective internal nuclear excitations it is used Fermi-gas expression:

$$\rho_{\rm int}^{tot}(E^*) = \frac{1}{\sqrt{2\pi\sigma}} \frac{\sqrt{\pi}}{12} a^{-1/4} U^{-5/4} \exp[2\sqrt{aU}]$$

a – level density parameter

$$a(U, Z, N) = \tilde{a}(A) \Big[1 + \delta W_g(Z, N) f(U) / U \Big]$$
$$f(U) = 1 - \exp(-\gamma U) \qquad \delta W_g = M_{exp} - M_{LDM}$$

 M_{LDM} – Myers and Swiatecki approximation

 $R_F(E^*, J) = \frac{2J+1}{2\sigma^2} \exp\left[-\frac{(J+1/2)^2}{2\sigma^2}\right]$

Back-shifted FG model

Nuclei	δW_g , MeV	S _n , MeV	δ
Pb-204	-6.702	8.395	-0.36001
Pb-205	-7.563	6.732	0.06938
Pb-206	-8.393	8.087	-0.25303
Pb-207	-9.553	6.738	1.07741
Pb-208	-9.961	7.368	1.43561
Pb-209	-8.607	3.937 Nucle	eus 0.79324

Nuclei	D _{0 exp} , keV	D _{0 th} , keV
Pb-205	2 ± 0.5	2.0
Pb-206	-	0.27
Pb-207	32 ± 6	24.0
Pb-208	38 ± 8	11.7
Pb-209	400 ± 80	675

Ground state channel level densities Back-Shifted Fermi Gas model

Nuclei	$a(S_n)$, MeV ⁻¹	ã, MeV⁻¹
Pb-205	12.65	21.86
Pb-206	11.84	21.69
Pb-207	10.33	22.86
Pb-208	11.01	26.30
Pb-209	9.44	20.30

Fission channel

Nuclei	δW_f , MeV	ã, MeV⁻¹
Pb-205	1.5	
Pb-206	1.5	21.69
Pb-207	1.5	22.86
Pb-208	1.5	26.30
Pb-209	1.5	20.30

-25

0

25

50

75

100 125

E*, MeV

150 175 200 225

Fission barriers

Rotating-Finite-Range Model (RFRM) by Sierk: single-humped fission barrier heights are determined within a rotating liquid drop model, extended with finite-range effects in the nuclear surface energy and finite surface-diffuseness effects in the Coulomb energy. (Phys.Rev. C **33** (1986) p.2039)

$$B_f = B_{RFRM} - (\delta W_{gs} - \delta W_f)$$

Nuclei	B _{RFRM} MeV	B_f , MeV	B_{f_ep} , MeV
Pb-205	12.85	21.9	24.6
Pb-207	12.98	24.0	27.0
Pb-208	13.15	24.6	27.4
Pb-209	13.22	23.3	

204 Pb(n,f) – reaction cross-section

206 Pb(n,f) – reaction cross-section

207 Pb(n,f) – reaction cross-section

Fission channel

Nuclei	δW_f , MeV	ã, MeV⁻¹
Pb-205	1.5	
Pb-206	1.5	21.69
Pb-207	1.5	22.86
Pb-208	-5.	26.30
Pb-209	1.5	20.30

10 -

-25

25

0

50

75

100 125

E*, MeV

150 175 200 225

$$B_f = B_{RFRM} - (\delta W_{gs} - \delta W_f)$$

Nuclei	B _{RFRM} MeV	B_f , MeV	B _{f mod} , MeV
Pb-205	12.85	21.9	
Pb-207	12.98	24.0	
Pb-208	13.15	18.1	22.0
Pb-209	13.22 Nucleu	23.3	

207 Pb(n,f) – reaction cross-section

²⁰⁸Pb(n,f) – reaction cross-section

Results

Z	A	Element	B _f , MeV RIPL-III	B _f , MeV This work
82	205	Pb	24.6	21.9
82	207	Pb	27.0	24.0
82	208	Pb	27.4	22.0
82	209	Pb		23.3

Main assumptions:

- TALYS code analysis
- Back-Shifted FG model of level densities

Thank you for the attention!