

MPD-ITS Current Status.

César Ceballos Sánchez (JINR) for the MPD-ITS Collaboration.

Nuclear physics technologies", Sept. 20 - 25, 2021

LXXI International conference "NUCLEUS – 2021. Nuclear physics and elementary particle physics.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

OUTLINE

- Introduction 0
- Overview on the work done by the Work Packages
- Goals 2021/2022

NUCLEUS – 2021 - 2021.09.22 | César Ceballos Sánchez

MPD-ITS structure: 3-layers Inner Barrel + 2-layers Outer Barrel.

hyperons (Λ , Ξ , Ω) and **D-mesons**.

It will supplement the TPC for the precise tracking, momentum determination and vertex reconstruction for

Some of the MPD-ITS requirements:

- Fast, high granularity CMOS pixel sensors with low noise level.
- Spatial resolution of track coordinate registration at the level of \sim 5–10 μ m.
- Material budget as low as possible.

TowerJazz 0.18 µm CMOS pixel sensor

» High-resistivity (> 1 k Ω cm) p-type epitaxial layer (20 μ m - 40 μ m thick) on p-type substrate.

» Small n-well diode (2-3 μ m diameter), ~100 times smaller than pixel => low capacitance.

» Deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area.

ALICE ITS-2. The first tracker totally based on MAPS technology

ITS-1

1. Improve impact parameter resolution by a factor of ~3

- » Get closer to IP (position of first layer): 39mm 22mm
- » Reduce X/Xo / layer: ~1.14% ~0.3% (for inner layers)
- » Reduce pixel size: $50\mu m \times 425\mu m \longrightarrow 0(28\mu m \times 28\mu m)$
- **2.** Improve tracking efficiency and p_T resolution at low p_T
 - » Increase granularity:
 - » 6 layers -7 layers
 - » silicon drift + strips + pixels pixels
- Fast readout
 - » Currently 1 KHz >> 100 kHz (Pb-Pb) and several 10⁵ Hz (p-p)
- 4. Fast insertion/removal for yearly maintenance
 - » Possibility to replace non functioning detector modules during yearly shutdown.

MPD - ITS

»Total active area ~ 10 m²

»~24000 pixel chips

- 1. ALICE-ITS (LHC, CERN)
- 2. sphenix-mvtx (Rhic, Bnl)

3. MPD-ITS (NICA, JINR)

Full technological transfer from ALICE to MPD

- Complete Knowhow
- Detector assembly and testing hardware/software
- Supervision and support from ALICE specialists

Full technological transfer from ALICE to MPD

mechanics elements for the MPD-ITS construction and its integration with the beam pipe, the FFD and the TPC.

MPD - ITS

Additionally, a lamination workshop is being setup for the production at JINR-LHEP of almost the complete carbon fiber

CMIS implementation at JINR (LIT)

The two-stages construction scenario. Stage-1 (by 2022/2023)

ALICE-ITS2 technology (42 Staves)

Layer 4: 18 Staves (36 Panels) Layer 5: 24 Staves (48 Panels)

The Outer Barrel.

The Integration Mechanics.

The two-stages construction scenario. Stage-2 (by 2025/2026)

The Inner Barrel.

Goal: Use double-size ALICE-ITS3-like sensors on a beam pipe of 40 mm in diameter ALICE-ITS3 (Under R&D): 20 um-thick (!!!) by 280 mm-long bent MAPS

Silicon Genesis: 20 micron thick wafer

BackUp plan: Built an ALICE-ITS2-like IB

Sensor

MPD - ITS

IBHIC

9 Sensors

NUCLEUS – 2021 - 2021.09.22 | César Ceballos Sánchez 10

MPD-ITS approach: **MPD** and beyond

• Bring the state of the art MAPS technology for trackers to JINR

High precision assembly and testing

- ✓ Automated management system at LIT
- Trained staff personnel
- Setting up a lamination workshop for carbon fiber structures
 - ✓ In-house production of mechanical parts with high precision
 - Possibility of implementing customized solutions
 - Trained staff personnel
- Establishing a solid collaboration
 - International (Chinese Institutions, CERN, INFN)
 - ✓ National (SPbSU, MSU)
 - ✓ Interlaboratories (LIT, FLNP)

Requires a lot of resource investment (money and time) on infrastructure, personnel training and overcoming the difficulties for keeping up with the world-level cutting edge technology.

Provides the opportunity to JINR of establishing itself in the front line of the MAPS-based tracker technology which is foreseen to become the new standard for fundamental and applied research.

Work Packa
. Simulations
. Inner Barrel HIC
. Outer Barrel HIC
. Outer Barrel Staves
. Mechanics & Cooling Des
. Mechanics & Cooling Pro
. Read-out and Electronics
. Read-out Electronics Pro
. DCS
0. In-beam Tests
1. Services

je	Status
	Active
	Low Profile
	Active
	Low Profile
sign	Active
duction	Active
Devel.	Active
J.	On hold
	Active
	On hold
	Active

Overview on the work done by the "Active" and "Low profile" WPs

NUCLEUS – 2021 - 2021.09.22 | César Ceballos Sánchez 14

charmed (D⁰- and D+-mesons) particles produced in central Au + Au collisions at $\sqrt{S_{NN}}$ = 9 GeV.

Thermal Generator tuned to the energy range of NICA collider.

The decay channels of strange and charmed particles used for their reconstruction in the MPD tracking system.

Hadron	${ m Mass}\ ({ m MeV/cm^2})$	Average path length $c\tau(\mathbf{mm})$	Decay channel	BR (%)
Λ	1115.68 ± 0.01	78.9	$\pi^-+\mathrm{p}$	63.9
Ξ_	1321.71 ± 0.07	49.1	$\pi^-+\Lambda^0$	99.9
Ω^{-}	1672.45 ± 0.29	24.6	$K^- + \Lambda^0$	67.8
D^+	1869.62 ± 0.20	0.312	$\pi^++\pi^++K^-$	9.13
D^0	1864.84 ± 0.17	0.123	$\pi^+ + K^-$	3.89

<u>Goal</u>: To asses the identification ability of the MPD tracking system (ITS + TPC) for the reconstruction of the decays of strange (Λ -, Ξ⁻, and Ω⁻hyperons) and

<u>MpdRoot</u>

QGSM event generator.

Track Reconstruction Methods:

- Kalman filter (KF).
- Vector Finder (VF)*

Signal selection criteria:

- Cuts^(**) on the topology of the decay of the short-lived particles (TC): dca (tracks of decay products, primary vertex of interaction). distance (between tracks of daughter particles) @ vertex of the decay of the parent particle. **<u>path</u>** length of the parent particle (point of its formation, decay point). angle (vector connecting the primary and secondary vertex, vector of the reconstructed momentum of the parent particle). (**)cut-off level for the specified selection parameters is based on the maximum value of the significance function Sg(Ci) for each parameter Ci
- Multivariate Data Analysis (MVA)

 $[^*]V^N \rightarrow R$ (classifier response) @ training phase, BDT (boosted decision tree classifier) @ analysis phase using the same topological parameters from TC

(*)D.A. Zinchenko, A. I. Zinchenko, E. G. Nikonov. «Vector Finder — a toolkit for track finding in the MPD experiment» Письма в ЭЧАЯ. 2021. Т. 18, No 1(233). С. 134

TPC+ITS-5-64 vs TPC+ITS-5-40

Reconstructed particles: Multistrange and Charmed particles

Track Reconstruction Method: Kalman filter (KF).

Signal selection criteria: TC & MVA

Particle	Ξ^-		Ω^{-}		D^+		D^+	
Reconstruction method	TC		TC		TC		MVA	
Number of events	10^{5}		10^{5}		10^{8}		10^{8}	
Beam pipe diameter [mm]	40	64	40	64	40	64	40	64
Efficiency [%]	1.3	1.2	0.7	0.6	0.5	0.04	1.0	0.06
Significance $(S/\sqrt{S+B})$	43.4	42.5	3.7	3.5	7.0	0.9	10.5	0.9

TPC+ITS-5-40: Provides reliable detection with an efficiency of about 1 % for both multistrange and charmed particles.

TPC+ITS-5-64:

- the efficiency of reconstruction of hyperons decreases by 10%.
- for D-mesons the efficiency of their reconstruction decreases by an order of magnitude.

The study of the physics of heavy-flavour on nucleus-nucleus collisions @ NICA-MPD seems to be promising assuming the beam pipe diameter will be reduced to an optimum value of 40 mm.

0%. es by an order of magnitude.

<u>Detection of D-mesons in central Au+Au collisions with the vertex detector TPC+ITS-5-40</u>

Particle	Mass [MeV/c²]	Mean path ct [mm]	Decay channel	BR	Multiplicity
Do	1864.8	0.123	π+ + K-	3.89%	10 ⁻²
D+	1869.6	0.312	π+ + π+ + K-	9.13%	10 ⁻²

TPC+ITS-5-40 pointing resolution^(*) of at least 100 μ m allows a decay vertex reconstruction of D^o mesons p_T down to 500 MeV/c.

(*)The pointing resolution of the vertex detector is defined as the r.m.s value of the closest approach distance of the reconstructed particle track to the vertex.

MPD - ITS

Signal Generator: TG Statistics: 1M decays Background Generator: QGSM Statistics: 100K events

Two methods were used for track reconstruction:

1)Method of Kalman filter (KF)

2)Method of vector finder (VF)

Two methods were used for D mesons selection:

1)Method of topological cuts (TC)

2)Method of multivariate data analysis (MVA)

D⁺ and D⁰ reconstruction using KF

reconstruct D^o and D⁺ with an efficiency of 0.85% and 1.0% respectively.

A. I. Zinchenko, S. N. Igolkin, V. P. Kondratiev & Yu. A. Murin" NICA-MPD Vertex Tracking Detector Identification Capability for Reconstructing Strange and Charmed Particle Decays". Physics of Particles and Nuclei Letters, volume 17, pages 856–870 (2020)

MPD - ITS

Particle	Do		D+		
Method	TC MVA		TC	MVA	
Efficiency, %	0.80	0.85	0.50	1.0	
Significance	5.3	5.5	7.0	10.5	
S/B ratio	0.10	0.11	0.12	0.14	

Using the topological cuts allows to reconstruct D^o and D⁺ decays with an efficiency of 0.8% and 0.5% respectively. Using the optimal BDT cut allows to

<u>D mesons reconstruction using KF and VF methods: comparison</u>

MPD - ITS

		D	0		D+				
nod	KF		VF		К	F	VF		
	тс	MVA	тс	MVA	тс	MVA	тс	MVA	
	0.80	0.85	1.67	1.70	0.50	1.0	1.5	2.0	
	5.3	5.5	16.8	17.0	7.0	10.5	21.2	28.5	
	0.10	0.11	0.74	0.75	0.12	0.14	0.5	0.8	

Using VF mechanism allows to reconstruct D+ with an efficiency 2 times higher and with higher level of significance compared to KF technique.

N. Maltsev (SPbSU), "The identification capability of the Inner Tracking System for the detection of D-mesons at the NICA/MPD". NUCLEUS -2021

Contact has been established with ALICE-ITS3 for participating on:

Mechanics

• Study of the radiation damage induced by fast neutrons on the carbon foams spacers irradiated at JINR's IBR-2 (more on next slide)

► <u>Simulations</u>

• Collaborate on the physics simulations for the large-area bent MAPS for the implementation of Hit and Cluster generations

▶ <u>In-beam tests</u>

• Conducting in-beam tests on large-area bent MAPS at JINR using 200 MeV electrons.

LHEP

WP2 - Inner Barrel HIC: Study of Radiation Damage on Carbon Foams

<u>The type of samples to be tested for radiation damage divided into three categories:</u>

- Carbon Foams
- Glues
- Subassembly structures

<u>Three types of carbon foams are proposed:</u>

- ERG (novel material for whom little information is available)
- AllComp LD
- AllComp HD

For the AllComp there has been previous studies about radiation damage that may be used as reference for the current studies to be performed.

Mechanics

FLNP's IBR-2 irradiation positions

<u>Contact has been established with ALICE-ITS3 for participating on the IB simulations:</u>

- size from ALICE"
- Pixel size = pixel Pitch = $15 \,\mu$ m.
- Sensor thickness: $30 \ \mu m$.

- Run the simulations for the entire setup IB+OB+TPC for three consecutive goals:
 - Hit generation.
 - Cluster generation.
 - Track reconstruction (Hyperons and D-mesons).

MPD - ITS

Simulations

First technical task has been established: "Implement an ITS3-like IB geometry for the MPD-ITS setup using the "realistic" pixel

NUCLEUS – 2021 - 2021.09.22 | César Ceballos Sánchez 23

Construction Management information System:

- Oracle DB installed and configured at LIT
- Test and Production sites already deployed
- System tuning in progress

Additionally

- A functional **BM@N** project started to implemented for:
 - Detector production/test data
 - Mechanical drawings
 - Technical documentation

MPD - ITS

WebApp

Administration Organization Planning Construction Data Accounting Reports Raw Materia

Activities: Test Project JINR 1

Name	Activity Type	Start Date	End Date	Location	Activity Status	Activity Result	હ	
	[61] DRW: Send DRW Unit for production	23.12.2020		0	[61] OPEN	0	1	*
IIGDRW T090.000.185	[61] DRW: Send DRW Unit for production	23.12.2020	23.12.2020	0	[62] CLOSED	[43] OK_SENT_FOR_PRODUCTION	1	*
	[41] Test	17.12.2020		0	[61] OPEN	0	1	~

CmisWebAPI

🥹 Help 👻 💥 👻 👤 Cel

The following operations are supported. For a formal definition, please review the Service Des

API

- <u>ActivityAttachmentCreate</u>
- ActivityAttachmentRemove

🕒 Log Ou

- ActivityChange
- ActivityComponentAssign
- ActivityComponentRemove
- ActivityCreate
- ActivityMemberAssign
- ActivityMemberChange
- ActivityMemberRemove
- ActivityParameterChange
- ActivityParameterCreate
- <u>ActivityParameterRemove</u>
- <u>ActivityRead</u>
- ActivityReadOne
- ActivityTypeRead
- <u>ActivityTypeReadAll</u>
- ActivityUriChange
- <u>ActivityUriCreate</u>

NUCLEUS – 2021 - 2021.09.22 | César Ceballos Sánchez 24

<u>cription</u> .	
-	

MAPS PAD-Chips:

- 20 wafers (46 chips each) and trays already received from CERN.
- 5 of them sent to CCNU for training.

FPC production:

- First batch (399 pcs) Blank FPC produced by SwissPCB arrived at JINR.
- Metrology test performed by "Modus97" in Bologna, Italy (90% detector-grade yield).
- Cross-Cable Soldering and FPCs Test Stations ready.
- Second batch of 440 FPCs in the process of contract.

Cross-Cable Soldering station

FPC Electrical Test Sation

MPD - ITS

PAD Chips

Blank FPCs

WP3 - Outer Barrel HIC (cont.)

OBHIC production area being set up in the clean room ISO6.

ALICIA-8@CleanRoom

- To be reconfigured to OB

MPD - ITS

AT ref.

marker

Chip ref. marker

Ultrasonic bonding Chips - FPC

<u>Delvotec@CleanRoom</u> - A dedicated one about to arrive

Qualification and Endurance test boxes

^(*) Power Boards BoB to be produced

Pull test station

- Design, Produce^(*) and Assembly all parts for:
 - MPD-ITS Mechanics and Cooling
 - MPD-ITS integrations with the beam pipe, the TPC and the FFD

<u>Cold Plates</u>: Water-cooled large-area (30 mm x 1502 mm) for dissipating a total of 20W each with a power density of $40 \text{mW}/\text{cm}^2$ (CERN technology).

Task: To produce Cold Plates with a similar performance as the ones form CERN but using only "civiliangrade "materials instead of the double-use prepreg k13d2u included on the original design.

A new version of the CP was produced substitution the prepreg k13d2u to MJ55 and adding an additional layer of carbon paper, with a planar high-thermal conductivity rated to 1500 W/(m*K).

^(*) Almost all carbon fiber structures for the mechanics are produced at JINR-LHEP

power bus

flexible printed circuit

cold plate

pixel

WP5/6 - Mechanics & Cooling Design/Production

Integration

WP5/6 - Mechanics & Cooling Design/Production LHEP

ЛФВЭ

WP5/6 - Mechanics & Cooling Design/Production

Integration

Current proposal Main installation steps:

- Installation of the container (ITS+FFD+Pipe) to TPC;
- \mathbf{M} Fix of central section clamp;
- **Mathematical Section Case.**

LHEP ЛФВЭ

WP5/6 - Mechanics & Cooling Design/Production

►<u>Design:</u>

• All Parts and Jigs drawings already created (> 300) and storage in a central repository @ JINR-disk

Production already started:

• Production of the end-wheels already started at JINR.

Matrix produced by "Me3oh"

соответстви ческой осна тов в соотве использоват АМЧ4752 - НV 4753 -	и с техпроцессом ТГТ стои обеспечивающе стоям с чертежком. в эпоксидный клей сг 100гр 48гр.	Iи	ност	И Ъ	гава:		
	Наименование		Ket.	Пря	імеч		
	Сборочные единиц	Сборочные елиницы				1	
	Панель охлаждения	4/5	1				
	Коннектор панели 4/ Сторона А	оннектор панели 4/5 торона А					
	Коннектор панели 4 Сторона С	/5	1				
-	D090.020.000						
панел 220 220 (Слой 4	Литер	a Ma	кса Листо	Macurrati 1:1			
(Сборс	очный чертёж)	0	иян	1			
и плат на сбор	интатов с исполнования интаторы линески на лине норой держателей плат , е вплоть до полной фин экс.	ан техн гйжн д цолжн ссация	стект а был а лин	ичеса горов, гь сйки	при		
ы.			_				
не	Наименование		ji j	При	меч		
	Сборочные единия	ы	1		_		
10	Линейка детекторов	-	9		_		
10	Технологическая сбо	2468	1	-			
	exor 4		+	-			

10		Технологическая сбор	958	1	
		0.001 4			
		Детали			
8		Кабельная коробка		9	Комплектио в составе личейки
					ретекторов
19		Опора сервисная слоб	i Ne4	3	
н		Фитинг Festo QS-1/4-1	0	6	
17		Платформа споя 4		1	
19		Втулка		4	
13		Втулка		36	Контлектно в составе линейки
					ретекторов
		Стандартные дета	.111		
1N912 a	t.1233114	Buurr 304L M3 x 8		36	
19933 a	t.1192809	Винт Л63 М4 х 20		4	
IM33 a	t.1216481	Шайба Л63 M4		4	
DINIHA I	rt.1401238	Burr IIA6.6 M3 x 16		36	
DINIHA I	rt.1401245	Внит ПА6.6 МЗ х 20		9	
N933 art	1399624	Винт ПА6.6 М4 х 10		6	
N555		Гайка IIA6.6 M4		6	
D3N9021	art.1404946	Illai6a IIA6.6 M4		12	
_		Материалы			
10		Эпоксидный компаун	44		~ 0,5kt
-		D090.065.000			
1			Jhereps	M	еса Масятаб
2.08.1	Сборка	а споя линеск			1:1
12.08.1	AGLERI	opon caon 4	Ш	ь,	
-	Chanas	กระพั แองาอีจะ	736(1	-	ARCTOR 1
12.06.1	Coopor	unan represe	0	иян	1
Pros. 1			Sector 1	X1	

WP5/6 - Mechanics & Cooling Design/Production

- Complex structures
- Composed by many substructures
- Produced with high accuracy

MPD - ITS

Complex metallic jigs for producing central detector cases produced by "Euromec s.r.l." (Modena, Italy)

Details at:

https://indico.jinr.ru/event/1909/contributions/11787/attachments/9278/14813/Readout%20Electronics%20Design%20for%20ITS%20of%20MPD%20in%20NICA%202021-02-08.pdf

<u>General structure of the MPD-ITS readout system</u>

×42

- ► A cluster of Readout Units (RUs) will control, trigger and read each single sensor in the detector.
- The RUs receives control commands and delivers data directly from/to the CRU, via the MPD implementation of the CERN Versatile Link.
- ► To maximize modularity, a single RU design will serve the whole detector.

GBTx ASICS can not be imported neither to Russia nor to China []

WP7/8 - Readout electronics Design/Production

- clocks, and trigger signals from the backend and distributes them to MAPS chips.
- NICA GBTx: A high-speed bidirectional data interface ASIC for optical links.

 - for the down-link direction.
- customized optical transceiver module.
- NICA_LD receives the high-speed up-link serial data from NICA_GBTx and amplifies the signal to driver the laser.
- four ASICs will be introduced in the following sections.

MPD - ITS

• NICA_ROC: Concentrates the output data of front-end MAPS chips and transfer the packaged data to the following NICA_GBTx ASIC. It also receives control commands,

• It receives multichannel data from the front-end (NICA_ROC), performs scrambling, encoding, frame building and serializing as the main function for the up-link direction. • It receives high-speed serial data from the back-end, performs CDR (Clock and Data Recovery), deserializing, decoding and distributing to the front-end as the main function

• NICA_LD (Laser Driver) and NICA_TIA (Transimpedance Amplifier): Are two analog ASICs that would be integrated together with the laser and PD (Pin Diode) in the

• NICA_TIA receives the down-link serial signal from the pin diode, and amplifies the signal to NICA_GBTx, so that the data can be furthered processed in NICA_GBTx. These

Structure of the power system of MPD-ITS

- ► The **PU** supplies 1.8 V positive power, as well as negative power used as bias for the staves.
- In addition to supplying power to the staves, the PU is also controlled by RU through the serial interface to implement the following functions:
 - Separate enabling of power channels and bias channels.
 - Adjusting the power supply voltage separately.
 - Adjusting the bias voltage in one PU.
 - Over current protection with adjustable threshold on each power channel.
 - Overheat protection on each PU.
 - Monitoring of voltage, current and temperature.

WP7/8 - Readout electronics Design/Production

MPD-ITS Test bench based on KCU105 and FMC to MAPS board

MPD - ITS

Kintex Ultrascale development KIT(KCU105)

The MPD-ITS test bench will be use to test several aspects of readout development: Test the FPGA implementation of the GBT protocol.

Test the FPGA-GBTx interface.

Try different connection schemes to ITS sensors / modules.

Try different clock schemes.

Try different interfaces for CRUs.

Provide readings for modules and sensors during production and testing.

Provides easy reading and control to and from a PC.

WP9 - DCS

- Low voltage power system:
- All CAEN modules already arrived.

• Test area currently being set up.

MPD - ITS

► <u>SCADA:</u>

- JACOB framework for WinCC OA obtained from CERN.
- Introductory seminar already performed by CERN specialist for JINR.
- Free-trial licenses obtained for WinCC OA from Siemes.
- 5 WinCC OA user licenses to be bought by MPD-ITS for NICA^[*].

^(*) Including TPC, Accelerator and Cryogenics

Contact has been established with CERN DCS development group and they offered:

• The participation of JINR-designated personnel on their official training sessions.

• The inclusion on their work group at CERN of a JINR-designated person for a training period of about 6 months.

Ongoing studies being performed by the Services group at JINR including:

- Cabling.
- Air cooling simulations.
- Integration with the TPC and the rest of the MPD.

MPD-ITS is also supporting for the MPD to address :

- Similarly needed by TPC and Ecal The leak-less water cooling plant setup.
- The dry gas cooling system.
- The beam pipe production and setup.

NUCLEUS – 2021 - 2021.09.22 | César Ceballos Sánchez 41

enc	ce	i	n
an	ld/	o	r
Ρ,	OF	°C	-
owl	ed	lg	e
in	un	ιi	t
nee	ri	n	g

ingn	ess
ski	lls
anal	ize
on	the
be	the

e	sea	irch
	sal	ary
C	luc	iing
ŗ	on	the
f	for	the

- Setup the readout test bench (end of 2021).
- Setup the full HIC assembly line and produce the first mockups (2021/1st Qt 2022)
- realistic FFD imitator and TPC bore imitator (2022).

In close collaboration with TPC, FFD and NICA vacuum teams with In cluse contaion while the true and Nie A vacuum ceams when metrology support from JINR's factory of superconducting magnets.

Produce all supporting/integration mechanics and dry-trial the integration procedure including beam pipe imitator,

Thank you.

NUCLEUS – 2021 - 2021.09.22 | César Ceballos Sánchez 44

