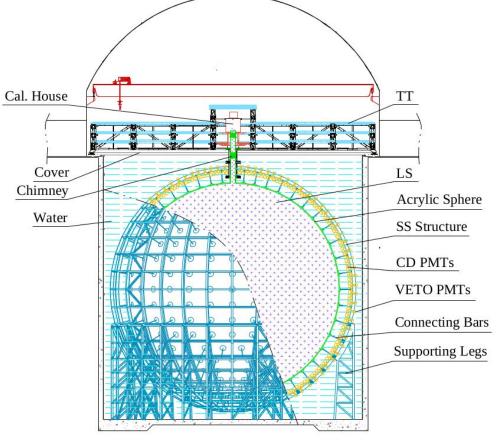


OSIRIS – An online scintillator radiopurity monitoring pre-detector of JUNO NUCLEUS 2021

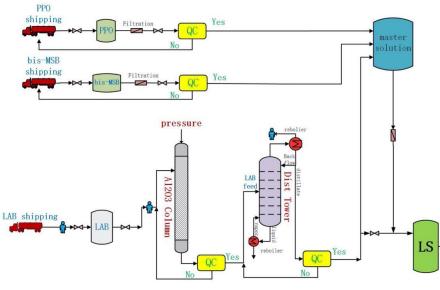
09.2021 I Runxuan Liu ^{1, 2}, on behalf of the JUNO collaboration

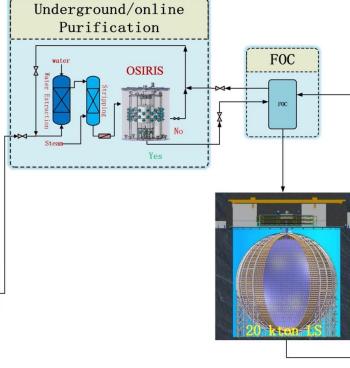
¹Forschungszentrum Jülich - Institute for Nuclear Physics, IKP-2, Jülich, Germany ²RWTH Aachen University - Physics Institute III B, Aachen, Germany


JUNO Experiment

- JUNO (Jiangmen Underground Neutrino Observatory) is a next-generation multi-purpose experiment.
- Under construction in Jiangmen, China.
- Expected to start data taking in 2023.
- The primary goal: to determine the neutrino mass hierarchy via oscillation pattern of reactor antineutrinos at 53 km baseline.
- There are several other (astro-) particle physics goals like detection of solar neutrinos, geo-neutrinos, atmospheric neutrinos, supernova neutrinos, DSNB neutrinos.

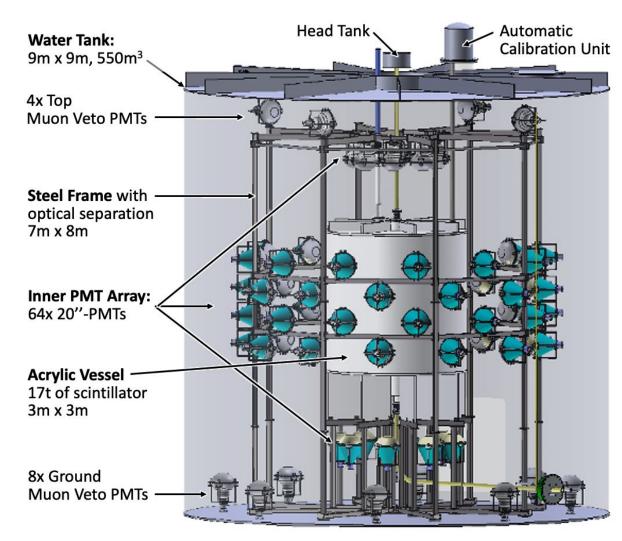
See more about JUNO in Yury Malyshkin's plenary talk


- > 20 kton liquid scintillator (LAB)
- > 17,612 large 20"-PMTs
- > 25,600 small 3"-PMTs
- ➤ 3% energy resolution at 1 MeV

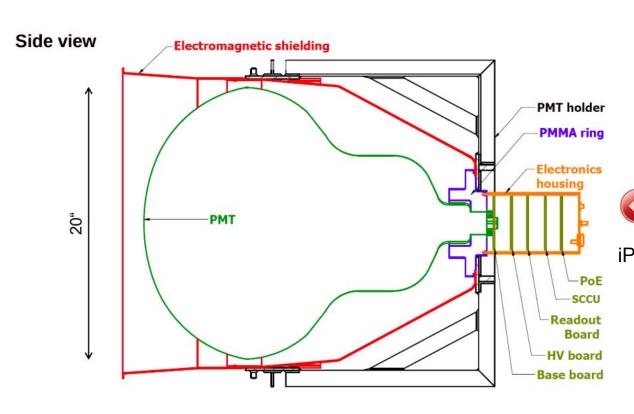


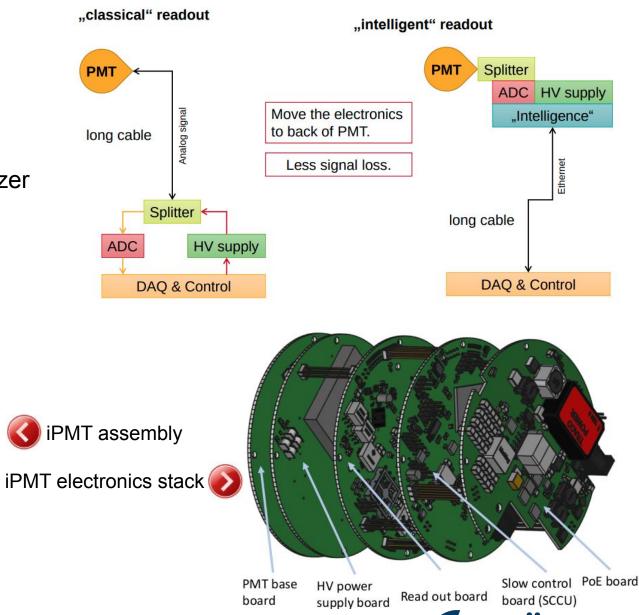
JUNO Scintillator System

- The radioactivity in LS may trigger events that mimicking the IBD (inverse beta decay) coincidence signals, or cause pile-up to the single events.
- For solar neutrino detection, β -decaying isotopes can form a background to elastic neutrino scattering events.
- So stringent requirements on the radiopurity of the LS is set as:
 - For IBD-based physics: ≤ 10⁻¹⁵ g/g of ²³⁸U and ²³²Th;
 - For solar neutrino detection: ≤ 10⁻¹⁶ g/g of ²³⁸U and ²³²Th.
- A chain of specialized purification plants is designed to set up at JUNO site.
- After purification, mixing, and storage, the LS will finally enter
 OSIRIS (Online Scintillator Internal Radioactivity Investigation System) pre-detector during several months of filling process.
- Only a fraction of each purification batch will be tested by OSIRIS.



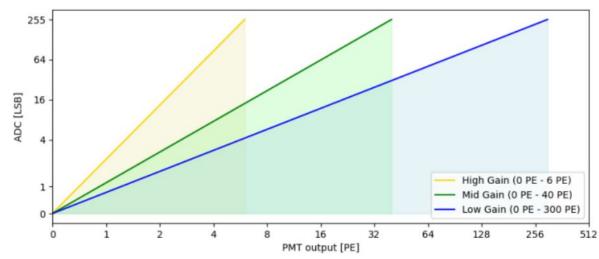
OSIRIS Experiment

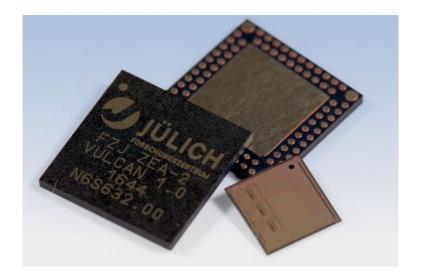

- The OSIRIS setup has been optimized for the purpose to detect the residuals of natural U/Th contamination of the LS.
- OSIRIS can hold 18 ton LS in the acrylic vessel.
- OSIRIS consists of
 - Inner detector (ID): LS volume with 64 inner PMTs
 - Outer detector (OD): 12 outer PMTs face towards the water shielding as a Cherenkov muon veto.
- Searching for the fast coincidence decays of ²¹⁴Bi ²¹⁴Po and ²¹²Bi ²¹²Po in the decay chains of ²³⁸U and ²³²Th, respectively.
- Determination of the ¹⁴C and ²¹⁰Po concentrations in the JUNO LS.
- Fast detection of air leaks at vales and connections via fast coincidences from ²²²Rn and ⁸⁵Kr.



iPMTs (intelligent PMTs)

- OSIRIS uses 20"-Hamamatsu PMTs .
- Dark count rate is 15.4 ± 2.6 kHz per PMT.
- All required electronics (high voltage supply, digitizer and control) are mounted at the PMT bases.

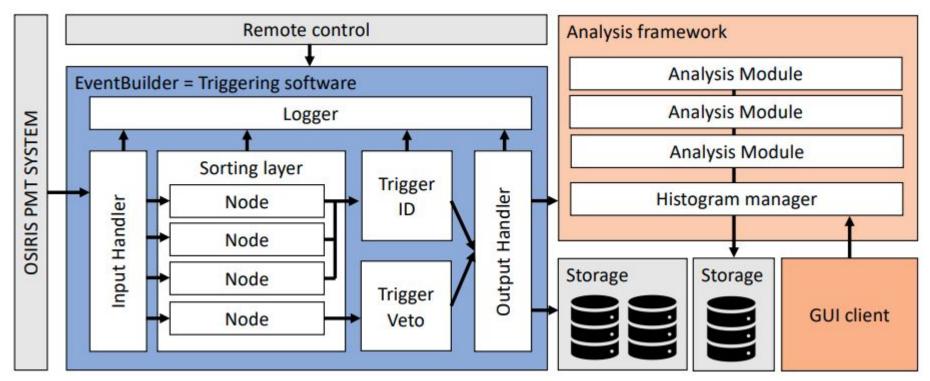




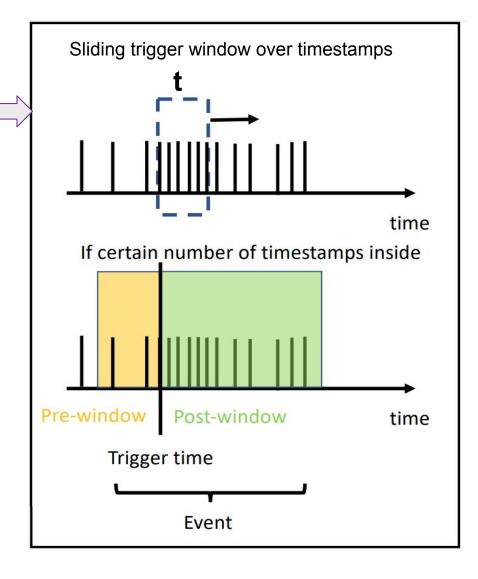
iPMT

VULCAN ASIC (Application-Specific Integrated Circuit)

- The VULCAN chip was developed by ZEA2, FZ Juelich, Germany.
- It has three individual identical receivers.
- Each receiver has an ADC with sampling rate 500 MSps.
- All three receivers are sampled in parallel.
- They cover different signal amplitude ranges.
- The ASIC selects the one with the highest resolution and no saturation.

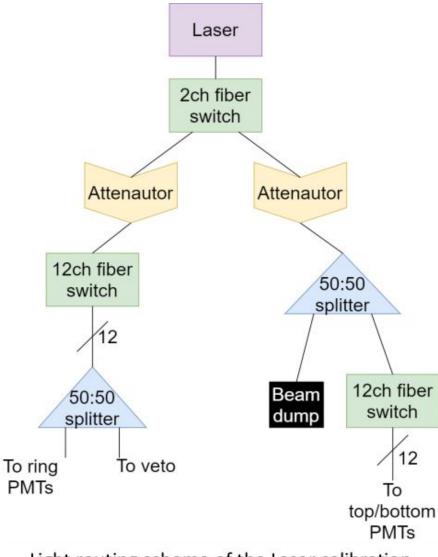


Online DAQ


- Each PMT will provide a data-stream composed of the digitized PMT pulses, each contains a timestamp.
- The event builder software will build events in ID and OD with optimized trigger conditions.
- Change of the event rates (especially Bi-Po coincidence) needs to be monitored in real time.
- Therefore, event reconstruction and analyses have to be performed online.

Trigger Conditions Optimization

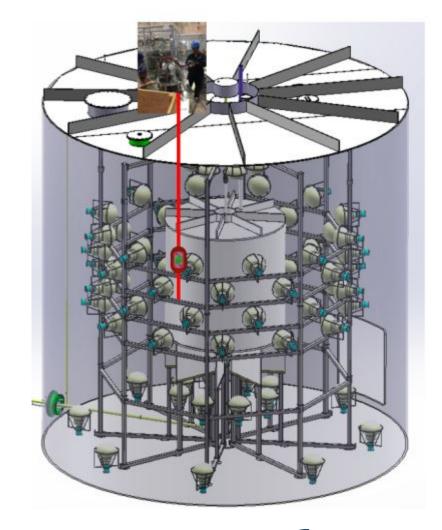
- Trigger condition (t, n) is defined as a minimal multiplicity of timestamps n in a time window t.
- For ID and OD, we will apply different pairs of trigger conditions.
- The ID&OD triggered events will merge as one if their timestamps are within 200 ns.
- Optimize ID trigger conditions assuming ¹⁴C contamination in the LS of 30.0 Bq and dark noise in ID of 15.3 kHz.
- Applying (t, n) = (70 ns, 5) for ID, we have:
 - o ¹⁴C event rate of 22.5 s⁻¹
 - o pure dark noise event rate of 2.9 s⁻¹
 - Trigger efficiency reaches 90% at 36.0 keV.
- For OD, multiplicity n > 4: to have darknoise event rate < 10 times smaller than the muon rate in OSIRIS (0.39 s⁻¹).
- Trigger conditions **ID** (70 ns, 5) and **OD** (150 ns, 5) give muon trigger efficiencies:
 - OD = 94.7%; ID||OD = 95.1%.



Laser Fiber System

- Precise relative timing and single photoelectron (s.p.e.) charge calibration of all PMTs.
- Picosecond laser (pulse length ≈ 80ps).
- 24 light insertion points with diffusers (showing below) to create homogeneous light field.
- Their positions are optimized according to uniform illumination of all PMTs (light intensities varying ≤ a factor of 2).
- A light distribution system (LDS) is applied (showing on the right).
- Required pulses: 2 x 10⁵.
- Measurement time per diffuser:
 20 s @ 10 kHz.

Diffuser Capsule



Light routing scheme of the Laser calibration system

Source Insertion System

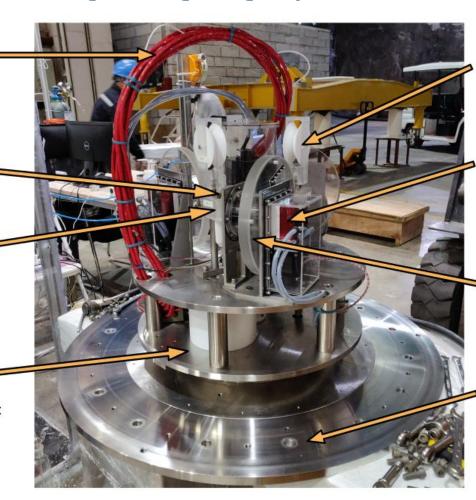
- Use gamma sources to calibrate the energy and the position reconstruction.
- And LED for time and charge calibration.
- Based on an Automated Calibration Unit (ACU), provided by the Daya Bay collaboration.
- Mounted on the roof of the water tank.
- 1.2 m from the central detector axis, to maximize the variation of the detector response at different height.
- One capsule carries LED (435 nm) with tunable intensity to investigate the PMT response to higher p.e. occupancies, also used for iPMT timing calibration at low intensities.
- One capsule with ¹³⁷Cs, ⁶⁰Co, and ⁶⁵Zn, for initial and regular calibrations, combined several kBq.
- One capsule with ≤ 1 Bq of ⁴⁰K, for continuous monitoring of the LS.

Automated Calibration Unit, Provided by the Daya Bay Experiment

Flexible cabling

- Bundles all incoming cables
- Designed to withstand moving turntable

Limit switch


 Automatic termination of wheel movement at fixed point

Load cell

- Montoring of cable tension
- Allows emergency shutoff before tearing of cable

Turntable

- Turns the whole structure
- Choice of three deployment wheels
- Limit switches in both directions

Deflection pulley

 Absorbs lateral displacement of the cable unwinding from the wheel

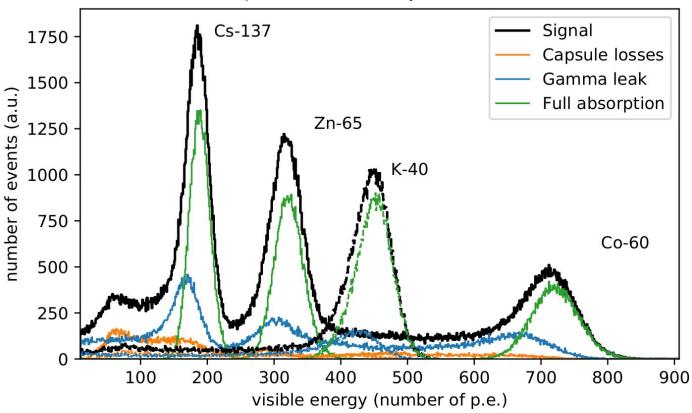
Stepper motor

- Moves the wheel to lower the source
- Worm gear box
- Control and feedback through software

Deployment wheel

- 9 inch diameter
- 10 groves
- Tota of ~7 m cable deployable

Flange


- 35 inch diameter
- Connection to bell jar on top and detector on bottom

ACU Energy calibration

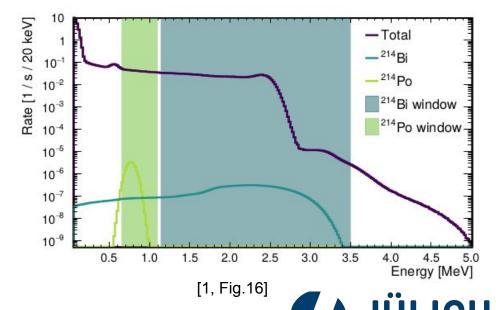
Monte Carlo simulation of the visible energy spectra

Source position: x = 120 cm; y = 0 cm; z = 120 cm

- Solid lines: weekly calibration with ¹³⁷Cs, ⁶⁰Co, and ⁶⁵Zn of several kBq.
- Dashed lines: continuous source with ⁴⁰K ≤ 1 Bq.

Sensitivity^[1] (to ²³⁸U and ²³²Th contamination)

Selection Cut of Bi-Po Coincidence events


Decay chain	Mass limit (IBDs)	β - α -coincidence	Activity limit	Po lifetime
²³⁸ U	10^{-15} g/g	²¹⁴ Bi- ²¹⁴ Po	$1.2 \times 10^{-8} \mathrm{Bq/kg}$	237 μs
²³² Th	10^{-15} g/g	²¹² Bi- ²¹² Po	$0.4 \times 10^{-8} \mathrm{Bg/kg}$	0.5 μs

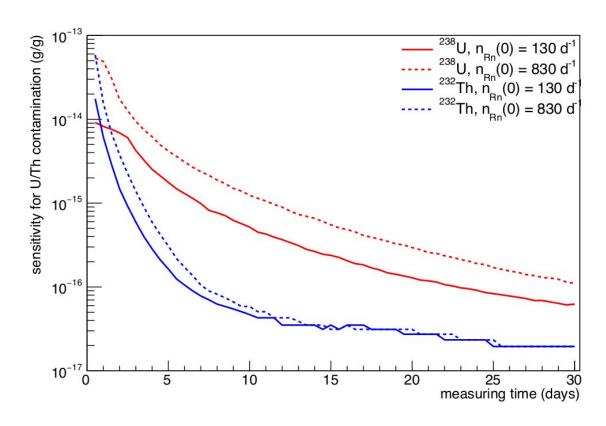
- The fiducial volume is defined as a cylinder of 2.8 m height and diameter;
- \circ $E_{\text{Bi. Po}}$ are the energy windows selected for prompt and delayed decays;
- \circ Δt and Δr are time distance cuts.
- For distance cut, the numbers in brackets represent the rejection efficiencies for accidental coincidence.

Cut	²¹² Bi-Po		²¹⁴ Bi-Po	
	Range	Efficiencies (%)	Values	Efficiencies (%)
FV	<140 cm	9 7	<140 cm	_
E_{Bi}	0.14 MeV to 2.5 MeV	98	1.4 MeV to 3.5 MeV	83
E_{Po}	0.9 MeV to 1.5 MeV	100	0.7 MeV to 1.1 MeV	99
Δt	0.2 μs to 2 μs	62	0.2 μs to 711 μs	95
Δr	<72.5 cm	98 (94)	<45 cm	88 (98)
Total		60		69

⁻Total - 212 Bi Rate [1 / s / ²¹²Po 10⁻² ²¹²Bi window 10-3 ²¹²Po window 10-5 10-6 10-7 10-8 2.0 2.5 3.0 3.5 4.0 4.5 Energy [MeV]

Forschungszentrum

^{[1]:} Based on arXiv:2103.16900 (published on European Physical Journal C)

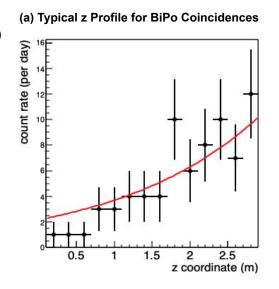

Sensitivity (to ²³⁸U and ²³²Th contamination)

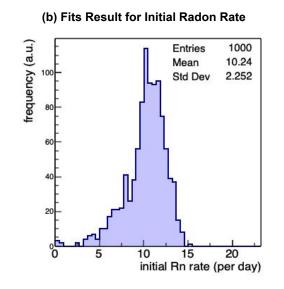
Bi-Po Sensitivity in Batch Mode

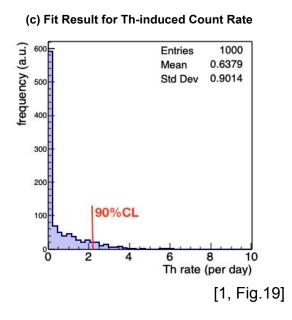
- OSIRIS is designed to have two operation modes:
 - Batch mode: a single 18-ton sample of LS will be monitored over days or weeks.
 - Continuous mode: constant exchange of LS during JUNO filling phase.
- Assuming presence of an initial radon contamination:

$$\dot{n}_{Rn}(0) = 130 - 830$$
 counts per day

- The strategy for sensitivity determination of a counting experiment (Cowan et al., 2011) is used.
- The sensitivity curves of ²¹²Bi-Po and ²¹⁴Bi-Po for a 90% confidence level are shown in the plot.
- OSIRIS can verify the JUNO IBD-level requirement within days
- For JUNO solar requirement, a measurement of 2-3 weeks is needed.

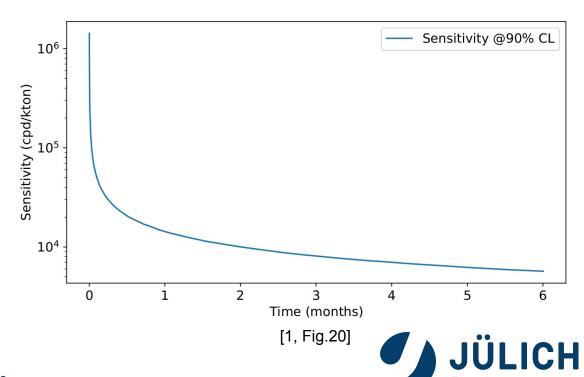

[1, Fig.18]




Sensitivity (to ²³⁸U and ²³²Th contamination)

Bi-Po Sensitivity in Continuous Mode

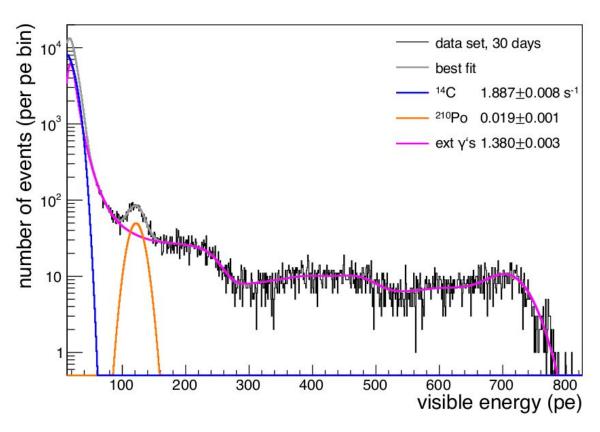
- The Bi-Po rate supported by radon will partially decay while LS traveling from top to bottom of the acrylic vessel. A reduction by 17% (80%) is expected for ²²²Rn (²²⁰Rn).
- The height (z) is equivalent to a time coordinate.
- Assuming 830 /day initial Rn rate, an exponential fitting (plus constant) is applied in plot (a) that reflects the ²¹²Pb lifetime and LS flow speed.


- Plot (b) and (c) show the results for Rn and Th-induced Bi-Po rates.
- The expected corresponding upper limit on the ²³²Th contamination for 90% C.L. translates to 1.4·10⁻¹⁴ g/g.
- In this continuous mode, OSIRIS can provide a timely warning to in case a sudden air leakage increases the amount of Rn.

Sensitivity

⁸⁵Kr

- 85Kr contamination is a measure of air leak in the LS filling process.
- The main decay branch of ⁸⁵Kr is β decay with endpoint energy of 687 keV.
- Its spectral shape and the expected rate is similar to the electron recoil spectrum of solar ⁷Be neutrino.
- So it is an important background in JUNO solar analysis.
- Pre-window time in trigger study was optimized to catch the coincidence in ⁸⁵Kr decay, it is 5000 ns.


- The 90% C.L. sensitivity of OSIRIS to a contamination by ⁸⁵Kr in dependence of the measurement time is shown in the plot.
- The expected ⁸⁵Kr rate is much lower than the sensitivity.
- But it will be helpful if we have air leakage problem.

Sensitivity

¹⁴C and ²¹⁰Po

- Restrict fiducial volume cut of 1 m height and diameter. Choose measuring time of 30 days.
- The baseline limit of ¹⁴C for JUNO is: 10⁻¹⁷.
- Assume ¹⁴C abundance of 10⁻¹⁸ (abundance level of Borexino) and ²¹⁰Po decay rate at 80 /(day·ton).
- We got the sample photoelectron (p.e.) spectrum for OSIRIS.
- The spectral contributions of ¹⁴C and ²¹⁰Po emerge above the otherwise dominant external γ background level.
- The ²¹⁰Po decay rate could be determined at 4% precision in a long batch-mode run.
- ¹⁴C background will be easily measured in OSIRIS.

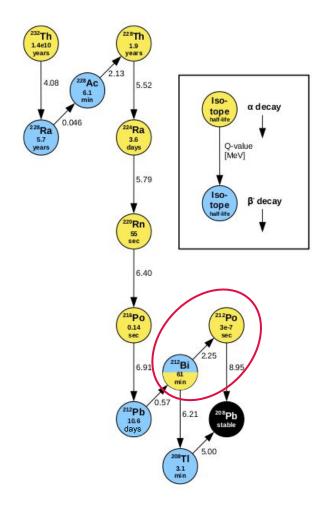
[1, Fig.21]

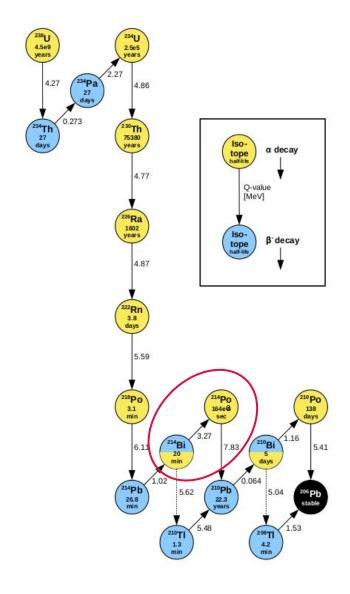
Summary

- Technical design of iPMT system, online DAQ system, and calibration systems are discussed.
- OSIRIS will provide valuable information on the efficiency of the purification chain and issue a timely alert in case problems occur with the radiopurity of the LS during filling of the JUNO main detector.
- OSIRIS has been optimized to screen the LS to the required radiopurity levels of U/Th.
- The final sensitivity and required measurement time depend on the level of radon emanation.
- OSIRIS will be able to trace air leaks in the JUNO filling system based on ⁸⁵Kr and ²²²Rn.
- Excellent sensitivity will be achieved for the distinctive ¹⁴C and ²¹⁰Po backgrounds.

Thanks for your attention!

If you have any questions or comments, Runxuan Liu r.liu@fz-juelich.de





Back up

Decay chain of U/Th

