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BM@N | Oytline

o Particle identification in the BM@N experiment
o Detector system of the BM@N setup

o Adding realistic effects to event simulation

o Distance method implementation

o Summary
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BM@N | NICA (Nuclotron-based lon Collider fAcility)
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The BM@N (Baryonic Matter at the Nuclotron) is aimed at
studying heavy ion collisions with fixed targets.
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BM@N | Current BM@N Run-7 geometry

Silicon + GEM (Gas Electron Multiplier)
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Analyzing magnet
Trigger detectors

MWPC (Multi-Wire Proportional Chamber)
ST (Silicon Tracker)

GEM (Gas Electron Multiplier)

ECAL (Electromagnetic Calorimeter)

CSC (Cathode Strip Chamber)

TOF1 (Time-Of-Flight detector)

DCH (Drift Chamber)

TOF2 (Time-Of-Flight detector)

ZDC (Zero-Degree Calorimeter)

Allows to reconstruct the momentum along the trajectories

of charged particles. Rigidity = p/q
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BM@N | Current BM@N Run-7 geometry

Analyzing magnet
Trigger detectors

MWPC (Multi-Wire Proportional Chamber)

ST (Silicon Tracker)

GEM (Gas Electron Multiplier)
ECAL (Electromagnetic Calorimeter)
CSC (Cathode Strip Chamber)
TOF1 (Time-Of-Flight detector)

DCH (Drift Chamber)
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TOF2 (Time-Of-Flight detector)

ZDC (Zero-Degree Calorimeter)

TOF (Time-Of-Flight detectors

Allows to calculate the velocity taking into account the
measurement of the time. g = |/tc
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Input data for the algorithm

The implemented method based on magnetic rigidity and
particle velocity, determines the probability for a particle to

have a certain type.
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BM@N | The difference of the experiment and MC

The efficiency of the algorithm was evaluated on Monte

Carlo dataq, but it will be applied to experimental.
Monte Carlo data Experimental data
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Input data are significantly different.
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How to fix

In order to bring the properties of the simulated data
closer to experimental, we need

o Implement selection procedures reliable experimental

data

o Determine the characteristics of good experimental
tracks

o Add realistic effects to Monte Carlo

Monte Carlo data Experimental data
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BM@N | Track selection algorithm

Re-extrapolating

Propagate the inner track through its hits in silicon and
GEM.

M-tracks D-tracks
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BM@N | Track selection algorithm

Matching

Tracks from the magnet are matched with the DCH tracks
and hits in the TOF detector.
o Matching detector chain GEM — DCH — TOF700

o The track is extrapolated to each hit in the detector
plane

o Calculate residuals AX = Xirack — Xnit; AY = Yirack — Yhit;
o Find the nearest hit
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BM@N | Track selection algorithm

Back propagation

Extrapolate track from TOF detector to the vertex.
o Get time of flight from a TOF hit

o Calculate velocity g = /tc
o Save track parameters if it belongs to the vertex range
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Before/After

0 Vertex in range
Vy € (—2,4)cm;Vy € (-6, —-1)cm; V; € (=5,5)cm

0 > 1 Silicon + >4 GEM +1 DCH + 1 TOF Hits

o Back extrapolation with parameter update
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Exp and MC comparison parameters

Data parometers
o Number of hits in Silicon and GEM tracks
o Station efficiency
o Residuals

Monte Carlo data Filtered data
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BM@N | Comparison of Exp and MC

Efficiency of silicon stations

Monte Carlo o
o Generator: DCMSMM N
o System: Ar + Cu 3 -
o Energy: 3.2 AGeV :— —
o Selected tracks only ) Ao A
Exp data -t
o System: Ar + Cu z:
o Energy: 3.2 AGeV M*
o Selected tracks only | ]
e e s I I
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BM@N | How to reduce efficiency?

The efficiency of a station depends on 1)Tracks passed
through the station and 2) Tracks in acceptance.
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BM@N | Adding dead strips

o A list of non-working strips was received
o Strips from this list were disabled during the simulation

stage.
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BM@N | Smearing vertex

Initially, the peaks of the vertex coordinates are very narrow
and high.

8 7 8 i
cm cm

The vertex width was obtained from experimental data and
added to the simulation.
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BM@N

Lorentz shifts

Lorentz shifts simulate the displacement of electron

avalanches in a magnetic field. Residuals become wider.

Gem station 3; Without Lorentz shifts
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Gem station 3; Lorentz shifts

Exp mean: -0.01
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Sim mean: 0.019

Sim RMS: 0.183

H
2 9000

7000}

Exp mean: -0.013
Exp RMS: 0.227

Sim mean: -0.004

Sim RMS: 0.259

L1 T
061 02 03 02 05
ax,em

Lt
Y708 06 0¢ 02 0 02 04 06 08
av,em

NUCLEUS-2021

18/31




BM@N | Comparison of Exp and MC

Efficiency of silicon stations

Monte Carlo off- S
o Generator: DCMSMM B
o System: Ar + Cu : -

o Energy: 3.2 AGeV ,

o Smearing Vertex e T
o Lorentz Shifts s

0 Dead strips ) m

Exp data s
o System: Ar + Cu "

o Energy: 3.2 AGeV | T
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BM@N

PID algorithm description

Method based on calculation of distance between

experimental velocity and theoretical one for each particle

type.
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BM@N

PID algorithm description

The probability with which a particle will belong to a certain
type is calculated by the formula w; = C/L;, where C = 1/2%i
and L is the distance to the theoretical curve.
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BM@N

PID algorithm description

Distance is calculated as the difference between theoretical

and experimental velocity L; = |8l, — Bexpl-

beta, c

— -
| — |
- - p |
L Lsimple — 1P _uemp 7
VP + ’ll;“

L (. Bewp) |
L ‘ | ‘ ‘

1 . | | |

p, GeV

NUCLEUS-2021

22/31




BM@N | Efficiency and contamination

Efficiency = %

Contamination = N,Q#ISE

N¢rue - Number of correctly identified particles of a given
type

Ntaise - NUmMber of falsely identified particles of a given type
Nsim - total number of simulated particles of a given type
Nig = Ntrue + Nigise - total number of particles identified as a
given type
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BM@N | protons

TOF-400, MC TOF-700, MC

Protons are mixing with kaons and pions
after 3 GeV/c but are still well identified
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-------- & Pions

TOF-400, MC
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Electrons have a big impact on efficiency
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BM@N | Electrons

TOF-400, MC

TOF-700, MC
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It is practically impossible to separate

electrons due to the closeness of the pion

line
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BM@N | kqons

TOF-400, MC TOF-700, MC

Beta, ¢
Beta, ¢

Quite good separation up to 3 GeV/c, but
high level of contamination
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-------- A Deuterium and 4He

TOF-400, MC

TOF-700, MC
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Deuterium are mixed with 4He. So,
efficiency is around 50%.
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BM@N | Strengths and Weaknesses

Strengths
o Executes quickly

o Gives a probabilistic
estimate

o High efficiency for
protons and kaons at low
momenta.

v

Ways to improve efficiency

Weoknesses
o Decreased efficiency

when merging clusters at

large momenta

o Cannot separate pi from

e

o Not enough information

to split d and «

o Take into account the a priori particle distribution
densities depending on the momentum
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BM@N | Summary

o Algorithms for filtering experimental data have been
implemented

0 Realistic effects have been added to the modeling
process

o Smearing Vertex
o Lorentz Shifts
o Dead strips

o Particle identification method was implemented and
tested
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Thank you for the attention!
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