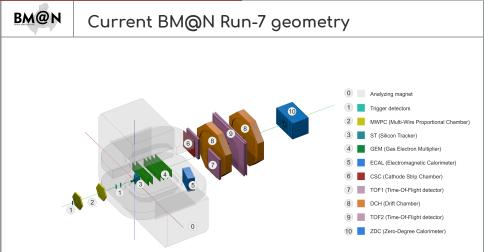
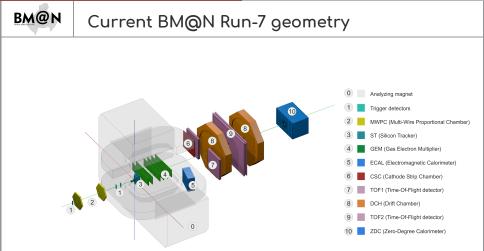
Particle identification method in the BM@N experiment

K.Mashitsin, A.Driuk, S.Merts, S.Nemnyugin

SPbU & JINR

22/09/2021

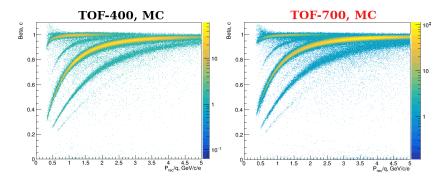

- Particle identification in the BM@N experiment
- Detector system of the BM@N setup
- Adding realistic effects to event simulation
- Distance method implementation
- Summary
- The work is supported by Russian Foundation for Basic Research grant 18-02-40104 mega.

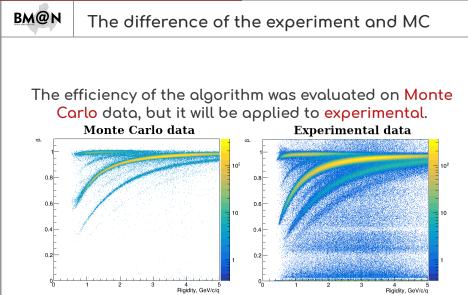

The BM@N (Baryonic Matter at the Nuclotron) is aimed at studying heavy ion collisions with fixed targets.

K. Mashitsin (SPbU)

Silicon + GEM (Gas Electron Multiplier)

Allows to reconstruct the momentum along the trajectories of charged particles. Rigidity $= \rho/q$

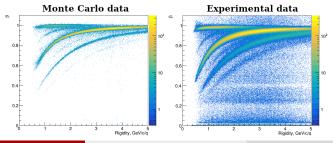



TOF(Time-Of-Flight detectors

Allows to calculate the velocity taking into account the measurement of the time. $\beta = l/tc$

The implemented method based on magnetic **rigidity** and particle **velocity**, determines the **probability** for a particle to have a certain type.

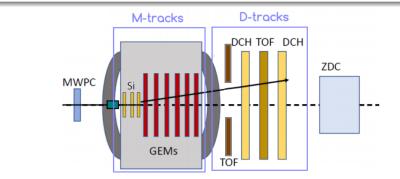
Input data are significantly different.


K. Mashitsin (SPbU)

How to fix

BM@N

In order to bring the properties of the simulated data closer to experimental, we need


- Implement selection procedures reliable experimental data
- Determine the characteristics of good experimental tracks
- Add realistic effects to Monte Carlo

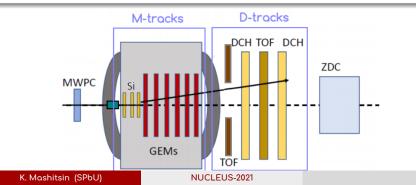
Re-extrapolating

Propagate the inner track through its hits in silicon and GEM.

Matching

Tracks from the magnet are matched with the DCH tracks and hits in the TOF detector.

- $\bullet~$ Matching detector chain GEM \rightarrow DCH \rightarrow TOF700 ~
- The track is extrapolated to each hit in the detector plane
- Calculate residuals $\Delta X = x_{track} x_{hit}; \Delta Y = y_{track} y_{hit};$
- Find the nearest hit

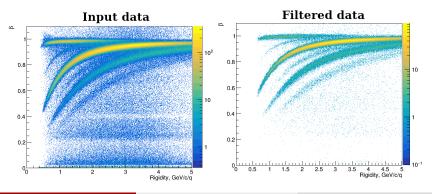


Back propagation

Extrapolate track from TOF detector to the vertex.

- Get time of flight from a TOF hit
- Calculate velocity $\beta = l/tc$

Save track parameters if it belongs to the vertex range

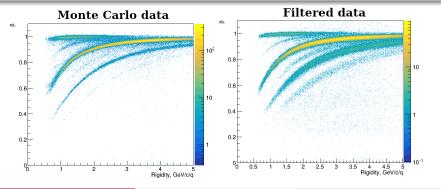


11/31

Before/After

BM@N

- Vertex in range $V_{\text{x}} \in (-2,4) \text{cm}; V_{\text{y}} \in (-6,-1)\text{cm}; V_{\text{z}} \in (-5,5)\text{cm}$
- ≥ 1 Silicon + ≥ 4 GEM + 1 DCH + 1 TOF Hits
- Back extrapolation with parameter update

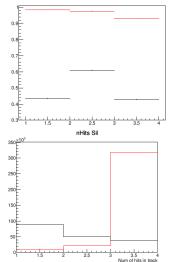


Exp and MC comparison parameters

Data parameters

BM@N

- Number of hits in Silicon and GEM tracks
- Station efficiency
- Residuals

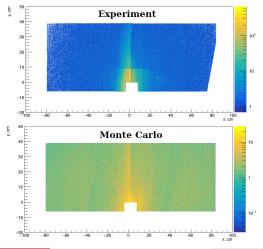

Comparison of Exp and MC

Monte Carlo

- Generator: DCMSMM
- System: Ar + Cu
- Energy: 3.2 AGeV
- Selected tracks only

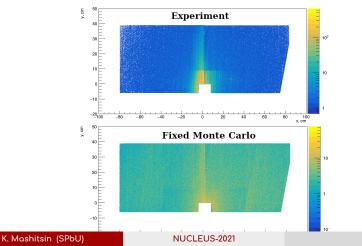
Exp data

- System: Ar + Cu
- Energy: 3.2 AGeV
- Selected tracks only

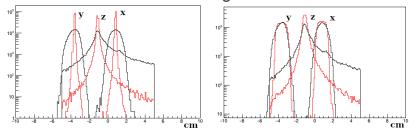


Efficiency of silicon stations

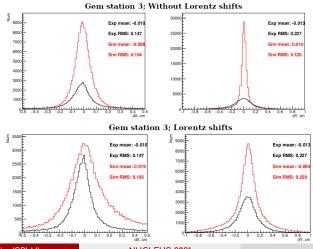
K. Mashitsin (SPbU)


The efficiency of a station depends on 1)Tracks passed through the station and 2) Tracks in acceptance.

K. Mashitsin (SPbU)

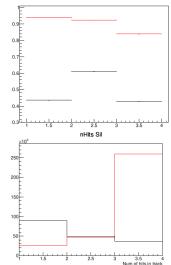


- A list of non-working strips was received
- Strips from this list were disabled during the simulation stage.


Initially, the peaks of the vertex coordinates are very narrow and high.

The vertex width was obtained from experimental data and added to the simulation.

Lorentz shifts simulate the displacement of electron avalanches in a magnetic field. Residuals become wider.

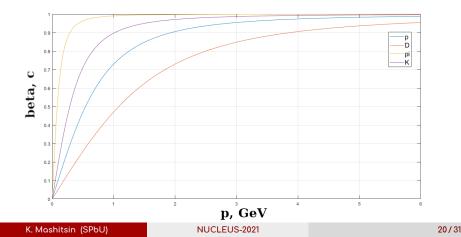

Comparison of Exp and MC

Monte Carlo

- Generator: DCMSMM
- System: Ar + Cu
- Energy: 3.2 AGeV
- Smearing Vertex
- Lorentz Shifts
- Dead strips

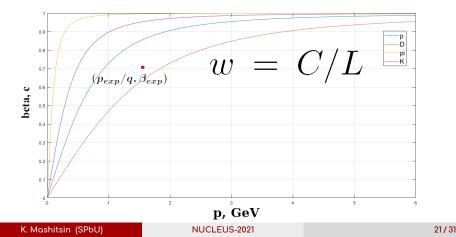
Exp data

- System: Ar + Cu
- Energy: 3.2 AGeV

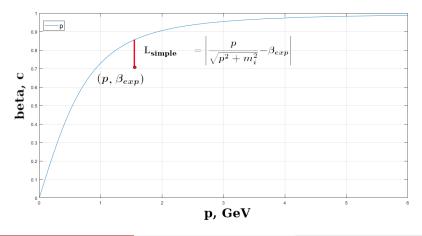


Efficiency of silicon stations

K. Mashitsin (SPbU)


Method based on calculation of distance between experimental velocity and theoretical one for each particle type.

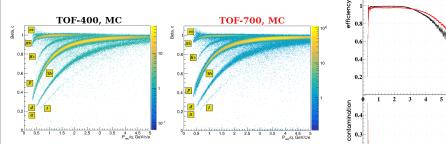
PID algorithm description

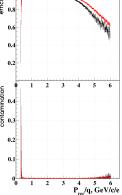

BM@N

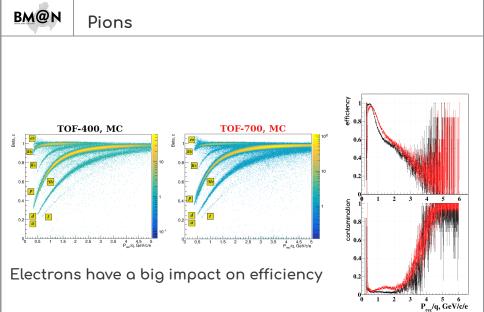
The probability with which a particle will belong to a certain type is calculated by the formula $w_i=C/L_i$, where $C=1/\sum \frac{1}{L_i}$ and L is the distance to the theoretical curve.

BM@N PID algorithm description

Distance is calculated as the difference between theoretical and experimental velocity $L_i = |\beta_{th}^i - \beta_{exp}|$.

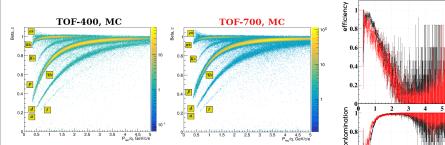

K. Mashitsin (SPbU)

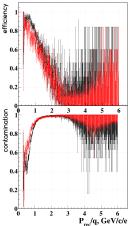

 $\begin{array}{l} \mbox{Efficiency} = \frac{N_{true}}{N_{sim}} \\ \mbox{Contamination} = \frac{N_{folse}}{N_{id}} \\ N_{true} \mbox{-} number of correctly identified particles of a given type} \\ N_{folse} \mbox{-} number of folsely identified particles of a given type} \\ N_{sim} \mbox{-} total number of simulated particles of a given type} \\ N_{id} = N_{true} + N_{folse} \mbox{-} total number of particles identified as a given type} \end{array}$

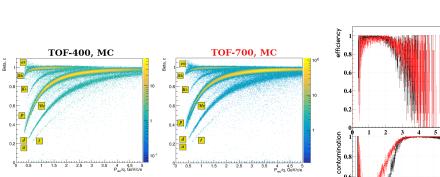

Protons

BM@N

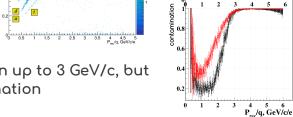
Protons are mixing with kaons and pions after 3 GeV/c but are still well identified



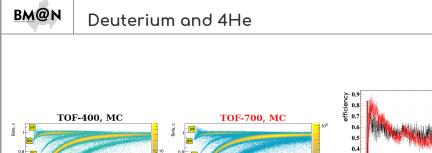

K. Mashitsin (SPbU)


Electrons

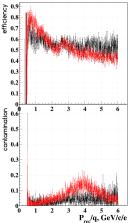
BM@N



It is practically impossible to separate electrons due to the closeness of the pion line



Quite good separation up to 3 GeV/c, but high level of contamination


BM@N

Kaons

3.5 4 4.5 5 P..../g. GeV/c/e 0.4

10

4 4.5 5 P.,.../q, GeV/c/e

0.6

0.4

0.2

NUCLEUS-2021

0 0.5 1 15 2 25 3 3

Strengths

- Executes quickly
- Gives a probabilistic estimate
- High efficiency for protons and kaons at low momenta.

Weaknesses

- Decreased efficiency when merging clusters at large momenta
- Cannot separate pi from e
- Not enough information to split d and α

Ways to improve efficiency

• Take into account the a priori particle distribution densities depending on the momentum

- Algorithms for filtering experimental data have been implemented
- Realistic effects have been added to the modeling process
 - Smearing Vertex
 - Lorentz Shifts
 - Dead strips
- Particle identification method was implemented and tested

Thank you for the attention!