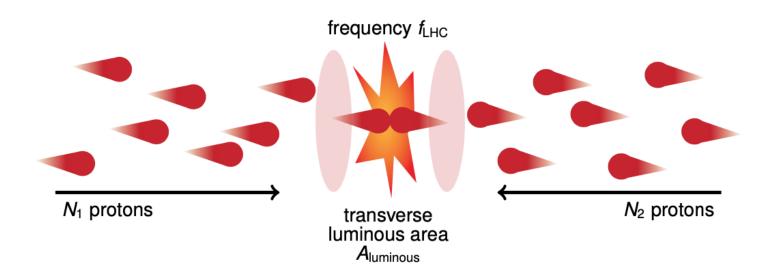
Geant4 study for geometry of quartz fiber luminometer at CMS HL-LHC

Deniz SUNAR CERCI

On behalf of the QFL development team
Adiyaman University
25th September 2021

LXXI International conference "NUCLEUS – 2021. Nuclear physics and elementary particle physics. Nuclear physics technologies"



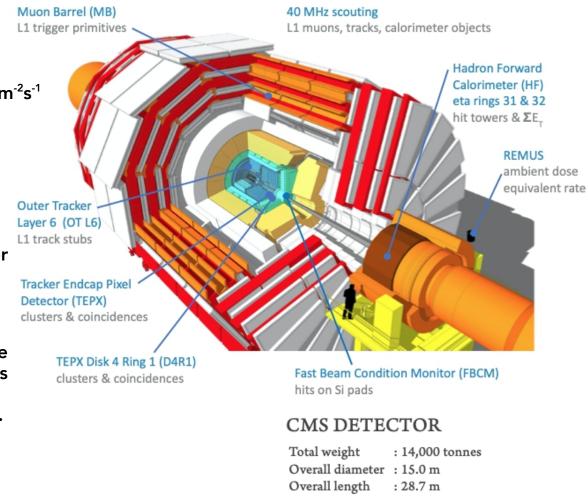
Outline

- **■** Introduction
- CMS Detector
- Luminometers
- Quartz fiber calorimeters (QFC)
- Simulation studies and results
- Summary

Introduction

- Luminosity (L):
 - Measure of the collision rate in a collider experiment: $\frac{dN}{dt}(pp \to X) = \mathcal{L} \cdot \sigma(pp \to X)$
 - A precise knowledge of the integrated luminosity of a collision data set is a crucial requirement for precision cross section measurements.
 - ▶ Determination with the beam parameters: $\mathcal{L} = \frac{N_1 N_2 I_{LHO}}{A_{luminous}}$

CMS detector


High Luminosity-LHC period (scheduled in 2027)

▶ instantaneous luminosity of 5x10³⁴ cm⁻²s⁻¹

with an average pileup of 140

a maximum performance scenario of 7.5×10^{34} cm⁻²s⁻¹

- an average of 200 interactions per bunch crossing
- Precise measurement of the luminosity is key to the physics program of the HL-LHC:
 - it is one of the dominant syst.unc.

Magnetic field : 3.8 T

Luminometers

- Luminosity measurements rely on the precise determination of event rates observed within the acceptance of a given detector (luminometer).
- In the CMS experiment, two-step strategy to measure the integrated luminosity of its collision data set
 - lacksquare 1st method relies on counting hits (or events). Here the luminosity per bunch (lacksquare) expressed as: $ln(1-f) \cdot f_{rev}$

$$L_B = -\frac{ln(1-f) \cdot f_{rev}}{\sigma_{vis}}$$

- where σ_{vis} is the visible cross section, f_{rev} is the LHC machine revolution frequency.
- ▶ 2nd method is integration of rate measurement
 - ightharpoonup normalization with σ_{vis} to obtain the integrated luminosity.

Luminometer design

- In order to measure luminosity a quartz fiber based luminometer (QFL) is being developped by the Turkish-Russian Collaboration.
- Cherenkov radiation generation and transport in the quartz fibers is the basis of luminosity measurements
- The basic idea is to find the proportionality coefficient between the luminosity and the signal
- The signal is generated by a module consisting of a small converter/multiplier, a quartz fiber bundle and a photodetector

Luminometer design

and a photodetector

- In order to measure luminosity a quartz fiber based luminometer (QFL) is being developped by the Turkish-Russian Collaboration.
- Cherenkov radiation generation and transport in the quartz fibers is the basis of luminosity measurements
- The basic idea is to find the proportionality coefficient between the luminosity and the signal

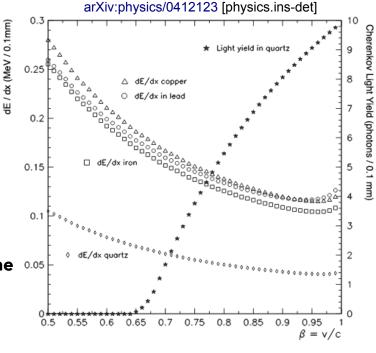
converter

■ The signal is generated by a module consisting of a small converter/multiplier, a quartz fiber bundle


GEOMETRY 1

quartz fibers in a bundle

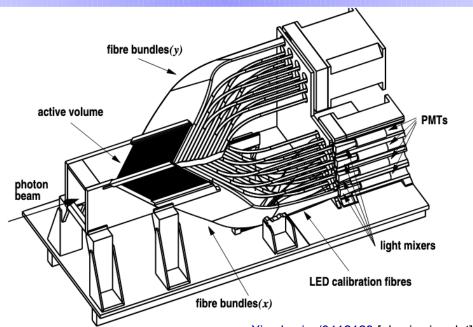
 Photodetectors are placed at the end of the fibers!


Principle of quartz fiber calorimeters

- The quartz fiber calorimeters:
 - sampling calorimeters.
 - absorber is made of dense material such as copper, iron, lead or tungsten
 - the sensitive medium is composed of quartz fibers.
- The incident particles interact with the calorimeter's absorber and initiate showers.
- The charged particles of the shower traversing the optical fibers produce Cherenkov photons, which are guided along the fibers and are collected by photomultipliers.
- Production of Cherenkov radiation occurs when a charged particle travels in a medium with velocity higher than the velocity of light in that medium.

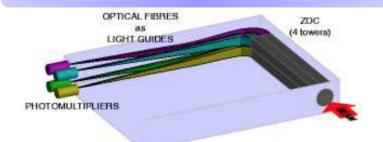
► Cherenkov radiation generation and transportation to the oldo photodetector by quartz fibers

$$eta > eta_{threshold} = rac{1}{n}$$
 $\cos heta_c = rac{1}{n eta}$

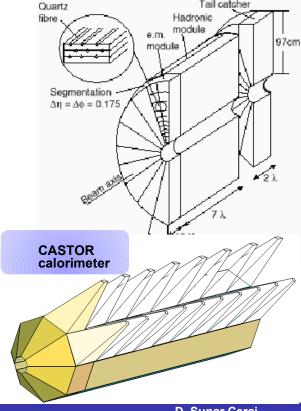


Quartz fiber calorimeters

■ main advantages:


- radiation hardness (high dose ~1 Grad or more)
- fast response (< 10 nsec)
- compact detector dimensions, since the transverse size of the visible shower is very narrow.

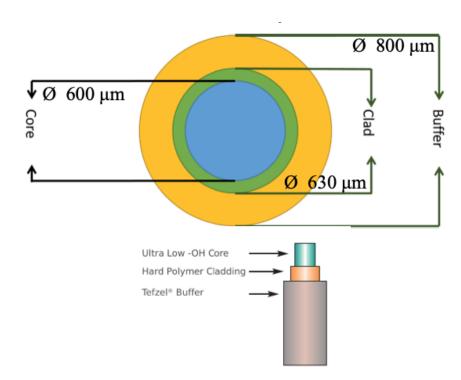
Very Forward Electromagnetic calorimeter for the H1 experiment.



arXiv:physics/0412123 [physics.ins-det]

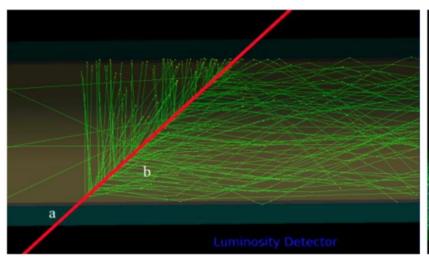
Zero Degree calorimeter for the NA50 experiment

CMS Very Forward calorimeter



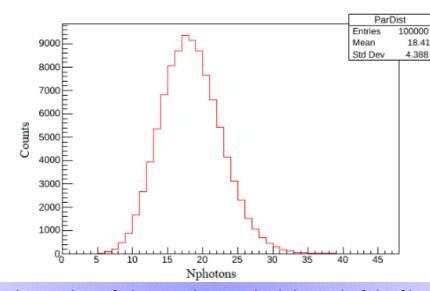
9/18

Geant4 simulation

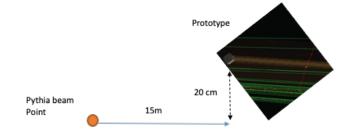

- Quartz fibers (QF)
 - the corner stones of the project
 - consist of three physical volumes in simulation, each a cylinder
 - Each layer has its own optical and material properties
 - Optical properties such as refractive indices and absorption lengths are added to Geant4.
 - Information about SiO_2 for the core, Polyethylene for the cladding and $C_4H_4F_4$ for the buffer is obtained from the manufacturer.

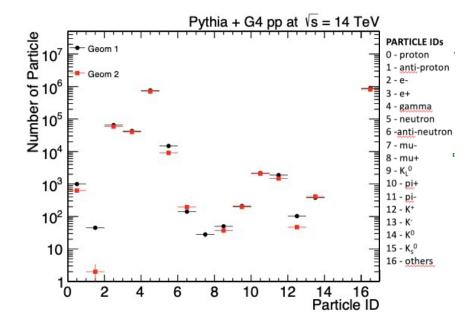
Cross-section of the fiber (blue – core, green – cladding (clad), yellow – buffer)

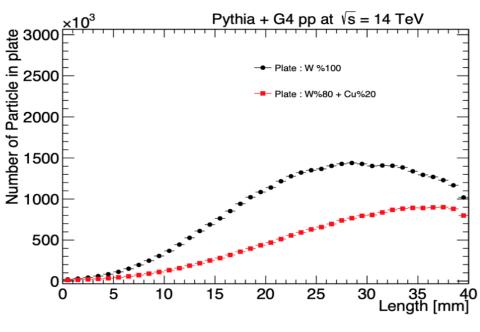
The fibers used are Quartz-PolyClad fibers produced by Molex


Results

Event visualization :

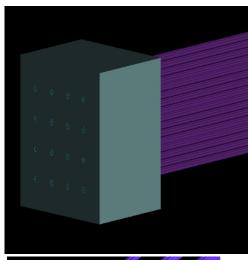

- Red track (a) electron (left figure),
- green tracks (b) optical photons (left figure)
- end of the fiber with a detecting volume (red (c) active area of the detecting volume (top right figure)
- A 'particle gun' used for creating events with electrons with the energy of 100 GeV hitting the fiber with momentum at $\theta = 45^{\circ}$ relative to the axis of the fiber.

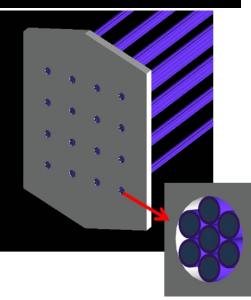



the number of photons that reached the end of the fiber

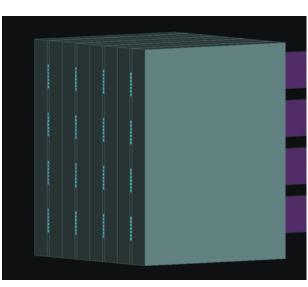
Results

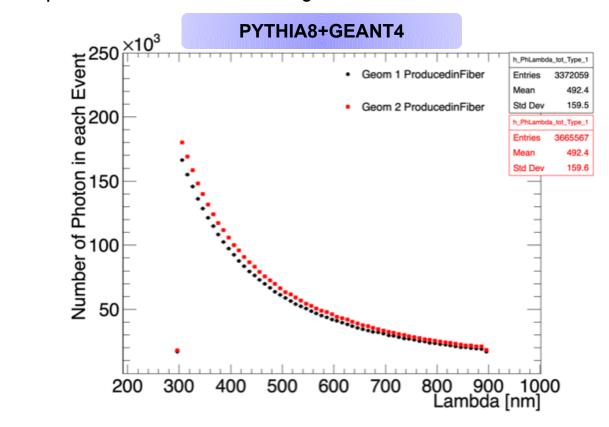
- Properties used in the GEANT4 Simulation:
 - ▶ 8 Plates with each 5x5cm (Tungsten%80+CU%20), width d = 0.5cm
 - ▶ 112 Fibers (r=0.06 cm, Quartz Fiber)

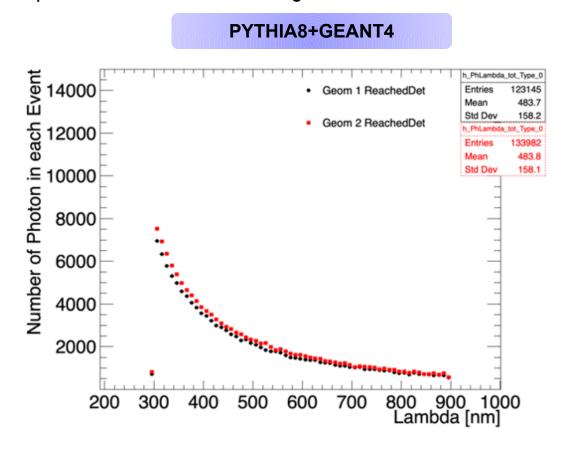



■ Distribution of particles hitting to prototype

■ Number of the particles generated in tungsten (black) and tungsten+copper (red) plates


Geometry designs: detailed view




Cherenkov photons vs. wavelength

- Comparison of two geometries for Cherenkov photons produced in fibers
 - Geometry 1 (black) and Geometry 2 (red)
- Number of photons in each event vs. wavelength distribution is shown.

Cherenkov photons vs. wavelength

- Comparison of two geometries for Cherenkov photons reached at the detector
 - Geometry 1 (black) and Geometry 2 (red)
- Number of photons in each event vs. wavelength distribution is shown.

Summary

- An overview of the luminometer project for luminosity measurements under the extreme conditions of the CMS HL- LHC has been presented
- Detailed Pythia8+Geant4 simulation has shown for two geometry designs
 - Doubtained results show a compete understanding of the optical behaviour in a fiber
 - Design optimization studies are on going.
 - Plan to test the prototype with test beam.

Acknowledgments

This study is supported by the Scientific and Technological Research Council of Turkey (TUBİTAK) Project number: 119N425 and by the Russian Foundation for Basic Research Project number: 20-52- 46005 and partly funded by the Scientific Research Projects Coordination Unit of Istanbul University Project number: FUA-2018-32919.

Acknowledgments

This study is supported by the Scientific and Technological Research Council of Turkey (TUBİTAK) Project number: 119N425 and by the Russian Foundation for Basic Research Project number: 20-52- 46005 and partly funded by the Scientific Research Projects Coordination Unit of Istanbul University Project number: FUA-2018-32919.

Thank you for your attention!

BACKUP